test_dist_base.py 65.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16
import tempfile
X
Xin Pan 已提交
17

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34
import paddle.fluid.core as core
35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
37 38
from paddle.fluid.dygraph.parallel import DataParallel, ParallelEnv
from paddle.fluid.framework import _test_eager_guard
39 40 41
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
42
RUN_STEP = 5
43
DEFAULT_BATCH_SIZE = 2
44
DIST_UT_PORT = 0
45

T
typhoonzero 已提交
46

47
def print_to_out(out_losses):
T
tianshuo78520a 已提交
48
    sys.stdout.buffer.write(pickle.dumps(out_losses))
49 50 51


def print_to_err(class_name, log_str):
52 53
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
54
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
55 56


57 58 59 60
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
61
class TestDistRunnerBase(object):
62

W
Wu Yi 已提交
63 64 65
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
66
                  single_device=False,
J
Jiangxinz 已提交
67 68
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
69 70 71
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

72
    @staticmethod
W
Wu Yi 已提交
73 74 75 76 77
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
78
                       dc_asgd=False,
79
                       current_endpoint=None,
T
tangwei12 已提交
80 81
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
82
        # NOTE: import fluid until runtime, or else forking processes will cause error.
83
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
84
        config.enable_dc_asgd = dc_asgd
85
        config.sync_mode = sync_mode
T
tangwei12 已提交
86 87
        config.runtime_split_send_recv = hogwild_mode

88 89
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
90
        # config.runtime_split_send_recv = True
91
        t = fluid.DistributeTranspiler(config=config)
92 93 94 95 96 97
        t.transpile(trainer_id=trainer_id,
                    program=main_program,
                    pservers=pserver_endpoints,
                    trainers=trainers,
                    sync_mode=sync_mode,
                    current_endpoint=current_endpoint)
T
typhoonzero 已提交
98 99
        return t

100 101 102 103 104 105 106 107 108
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
109
    def run_pserver(self, args):
W
Wu Yi 已提交
110
        self.lr = args.lr
111
        self.get_model(batch_size=args.batch_size)
112
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
113

114 115 116 117 118 119 120
        t = self.get_transpiler(trainer_id=args.trainer_id,
                                main_program=fluid.default_main_program(),
                                pserver_endpoints=args.endpoints,
                                trainers=args.trainers,
                                sync_mode=args.sync_mode,
                                dc_asgd=args.dc_asgd,
                                hogwild_mode=args.hogwild)
W
Wu Yi 已提交
121 122 123
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
124

T
typhoonzero 已提交
125 126 127
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
128
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
129
        exe.run(pserver_prog)
130
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
151 152 153

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
154
        for i in six.moves.xrange(RUN_STEP):
155
            loss = exe.run(main_program, fetch_list=[avg_cost])
156 157 158
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
159 160 161
            if lr_sheduler is not None:
                lr_sheduler.step()

162
        data_loader.reset()
163 164
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
165
        sys.stdout.buffer.write(pickle.dumps(out_losses))
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
197 198
            var for var in
            fluid.default_main_program().global_block().vars.values()
199 200 201 202 203 204 205 206 207 208 209 210 211
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
X
xiongkun 已提交
212 213 214 215 216
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
236
        sys.stdout.buffer.write(pickle.dumps(out_losses))
237

238 239
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
240 241 242 243 244 245 246 247

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
248
        dist_strategy.fuse_memory_size = 1  # MB
249
        dist_strategy.fuse_laryer_size = 1
250 251 252 253
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
254 255
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
256 257 258

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
259
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
260 261
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
262 263

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
264
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
265 266 267 268

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

269 270 271 272 273 274 275 276 277 278
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
279 280 281 282 283 284 285 286 287 288

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

289 290 291 292 293 294 295
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

296 297 298 299 300 301 302 303 304 305 306 307 308 309
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

310
        print_to_err(type(self).__name__, "begin to train on trainer")
311 312 313 314 315 316
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
317 318
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
319

T
tianshuo78520a 已提交
320
        sys.stdout.buffer.write(pickle.dumps(out_losses))
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

352
    def run_trainer(self, args):
W
Wu Yi 已提交
353
        self.lr = args.lr
W
Wu Yi 已提交
354 355 356
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
357 358 359
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
360 361 362
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
363

W
Wu Yi 已提交
364
        if args.update_method == "pserver":
365
            print_to_err(
366 367
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
368 369 370 371 372 373 374
            t = self.get_transpiler(trainer_id=args.trainer_id,
                                    main_program=fluid.default_main_program(),
                                    pserver_endpoints=args.endpoints,
                                    trainers=args.trainers,
                                    sync_mode=args.sync_mode,
                                    dc_asgd=args.dc_asgd,
                                    hogwild_mode=args.hogwild)
T
tangwei12 已提交
375

T
typhoonzero 已提交
376
            trainer_prog = t.get_trainer_program()
377
            print_to_err(
378 379
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
380
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
381 382 383
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
384
            config.nccl_comm_num = args.nccl_comm_num
385 386 387
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
388
            print_to_err(
389 390
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
391
            nccl2_t = fluid.DistributeTranspiler(config=config)
392 393 394 395 396
            nccl2_t.transpile(args.trainer_id,
                              program=fluid.default_main_program(),
                              startup_program=fluid.default_startup_program(),
                              trainers=args.endpoints,
                              current_endpoint=args.current_endpoint)
397
            print_to_err(
398 399
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
400
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
401
        else:
402
            print_to_err(
403 404
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
405
            trainer_prog = fluid.default_main_program()
406
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
407

408 409 410
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

411
        if args.use_cuda:
412 413
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
414 415 416
        else:
            place = fluid.CPUPlace()

417 418
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
419
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
420

W
Wu Yi 已提交
421 422
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
423

W
Wu Yi 已提交
424
        build_stra = fluid.BuildStrategy()
425 426 427
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
428

429 430 431 432
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
433 434 435
        if args.hogwild:
            build_stra.async_mode = True

436 437 438
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
439 440 441 442 443
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
444
        pass_builder = None
X
Xin Pan 已提交
445
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
446
            pass_builder = build_stra._finalize_strategy_and_create_passes()
447
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
448
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
449

W
Wu Yi 已提交
450
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
451 452
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
453
        else:
W
Wu Yi 已提交
454
            # case args.update_method == "nccl2_reduce_layer":
455 456
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
457

458
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
459
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
460
            loss_name=avg_cost.name,
W
Wu Yi 已提交
461
            build_strategy=build_stra,
W
Wu Yi 已提交
462
            exec_strategy=exec_strategy)
463
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
464 465 466 467 468 469 470

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
471
        reader_generator = train_reader()
T
typhoonzero 已提交
472

473 474
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
475
            if args.update_method != "local" and args.use_reader_alloc:
476 477 478 479 480 481 482
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
483

484
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
485
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
486
        out_losses = []
487
        for i in six.moves.xrange(RUN_STEP):
488 489
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
490
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
491
            out_losses.append(loss[0])
492
            print_to_err(type(self).__name__, "run step %d finished" % i)
493 494 495
            if lr_scheduler is not None:
                lr_scheduler.step()

496
        print_to_err(type(self).__name__, "trainer run finished")
497

498
        print_to_out(out_losses)
T
typhoonzero 已提交
499 500


501
class TestParallelDyGraphRunnerBase(object):
502

503 504 505 506 507 508 509 510
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

511
    def _get_data(self, batch, args):
X
xiongkun 已提交
512 513 514 515
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
516
            new_batch = []
517

518 519 520
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
539 540 541
        else:
            return batch

542 543
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
544 545 546
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
547 548 549 550 551
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
552 553 554
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
555 556 557
        elif fluid.core.is_compiled_with_mlu():
            device_id = int(os.getenv("FLAGS_selected_mlus", "0"))
            place = fluid.MLUPlace(device_id)
558
        else:
X
xiongkun 已提交
559
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
560 561 562 563

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
564 565
            np.random.seed(seed)
            import random
566
            random.seed(seed)
567 568
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
569

570
            #if args.update_method == "nccl2":
571
            if args.update_method == "nccl2" or args.update_method == "bkcl" or args.update_method == "hccl" or args.update_method == "cncl":
572 573 574 575 576
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
577
                paddle.distributed.init_parallel_env()
578
                print_to_err(
579 580
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
581
                dygraph.parallel.prepare_context(strategy)
582 583 584 585 586 587
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
588
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
589 590 591 592 593 594 595 596 597 598

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

599
            out_losses = []
600
            print_to_err(type(self).__name__, "begin to run dygraph training")
601
            for step_id, data in enumerate(train_reader()):
602
                data = self._get_data(data, args)
603 604 605
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
606
                if step_id % 10 == 0:
607
                    print_to_err(
608
                        type(self).__name__,
609
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
610
                out_losses.append(loss.numpy())
611 612 613 614

                loss.backward()

                opt.minimize(loss)
615 616
                if not args.accumulate_gradient:
                    model.clear_gradients()
617
        print_to_out(out_losses)
618

619 620 621 622 623 624 625 626 627
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
628
        random.seed(seed)
629
        # get trainer id
L
LiYuRio 已提交
630 631
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
632 633

        # 3. init parallel env
X
xiongkun 已提交
634
        if args.update_method in ["nccl2", "gloo"]:
635 636 637 638
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
639
        if args.update_method in ["nccl2", "gloo"]:
640 641
            model = paddle.DataParallel(
                model, find_unused_parameters=args.find_unused_parameters)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

657
    def run_use_fleet_api_trainer(self, args):
658 659 660 661 662 663 664 665 666 667
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
668
        random.seed(seed)
669
        # get trainer id
L
LiYuRio 已提交
670 671
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
672

673 674
        # set strategy
        strategy = fleet.DistributedStrategy()
675 676
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
677

678
        # 3. init parallel env
679
        if args.update_method == "nccl2" or "bkcl" or "hccl":
680
            fleet.init(is_collective=True, strategy=strategy)
681 682 683

        # 4. train model
        model, train_reader, opt = self.get_model()
684
        if args.update_method == "nccl2" or "bkcl" or "hccl":
685 686 687 688 689 690 691 692 693 694 695 696 697 698
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
699 700
            if not args.accumulate_gradient:
                opt.clear_grad()
701 702
        print_to_out(out_losses)

703

T
typhoonzero 已提交
704
def runtime_main(test_class):
W
Wu Yi 已提交
705
    parser = argparse.ArgumentParser(description='Run dist test.')
706 707 708 709
    parser.add_argument('--role',
                        type=str,
                        required=True,
                        choices=['pserver', 'trainer'])
W
Wu Yi 已提交
710
    parser.add_argument('--endpoints', type=str, required=False, default="")
711 712 713 714 715
    parser.add_argument('--update_method',
                        type=str,
                        default="local",
                        choices=[
                            "pserver", "nccl2", "bkcl", "local",
716
                            "nccl2_reduce_layer", "gloo", "hccl", "cncl"
717
                        ])
W
Wu Yi 已提交
718 719
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
720
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
721 722
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
723
    parser.add_argument('--use_pipeline', action='store_true')
724
    parser.add_argument('--use_fleet_api', action='store_true')
725
    parser.add_argument('--use_fleet_api_20', action='store_true')
726
    parser.add_argument('--use_local_sgd', action='store_true')
727
    parser.add_argument('--diff_batch', action='store_true')
728
    parser.add_argument('--ut4grad_allreduce', action='store_true')
729 730 731 732 733 734 735 736
    parser.add_argument('--hallreduce_inter_nranks',
                        type=int,
                        required=False,
                        default=2)
    parser.add_argument('--current_endpoint',
                        type=str,
                        required=False,
                        default="")
W
Wu Yi 已提交
737
    parser.add_argument('--sync_mode', action='store_true')
738
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
739
    parser.add_argument('--use_cpu', action='store_true')
740
    parser.add_argument('--use_xpu', action='store_true')
741
    parser.add_argument('--use_dgc', action='store_true')
742
    parser.add_argument('--use_npu', action='store_true')
743
    parser.add_argument('--use_mlu', action='store_true')
744
    parser.add_argument('--accumulate_gradient', action='store_true')
745
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
746
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
747
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
748
    parser.add_argument('--hogwild', action='store_true')
749
    parser.add_argument('--save_model', action='store_true')
750 751 752
    parser.add_argument('--use_reader_alloc',
                        action='store_true',
                        required=False)
753
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
754
    parser.add_argument('--lr', required=False, type=float, default=0.001)
755 756 757 758 759 760 761 762
    parser.add_argument('--batch_merge_repeat',
                        required=False,
                        type=int,
                        default=1)
    parser.add_argument('--nccl2_reduce_layer_local_run',
                        required=False,
                        type=bool,
                        default=False)
763
    parser.add_argument('--sync_batch_norm', action='store_true')
764 765 766 767
    parser.add_argument('--fuse_all_reduce',
                        required=False,
                        type=ast.literal_eval,
                        default=None)
W
Wu Yi 已提交
768 769

    args = parser.parse_args()
T
typhoonzero 已提交
770

X
xiongkun 已提交
771 772 773
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
774
    model = test_class()
W
Wu Yi 已提交
775
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
776
        model.run_pserver(args)
777 778
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
779 780
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
781 782
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
783
    else:
784
        model.run_trainer(args)
X
Xin Pan 已提交
785

M
minqiyang 已提交
786

M
minqiyang 已提交
787
import paddle.compat as cpt
Y
Yancey1989 已提交
788 789
import socket
from contextlib import closing
M
minqiyang 已提交
790

X
Xin Pan 已提交
791 792

class TestDistBase(unittest.TestCase):
793

W
Wu Yi 已提交
794 795 796
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

797 798 799
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
800
            self.__use_xpu = False
801
            self._use_dgc = False
802
            self.__use_npu = False
803
            self._use_mlu = False
804 805
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
806
            self.__use_xpu = False
807
            self.__use_npu = False
808
            self._use_mlu = False
809 810 811 812
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
813
            self.__use_npu = False
814
            self._use_mlu = False
815 816 817 818 819
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
820 821 822 823 824 825 826
            self._use_mlu = False
        elif self._enforce_place == "MLU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = False
            self._use_mlu = True
827 828 829 830 831
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
832 833 834 835
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
836

X
Xin Pan 已提交
837 838 839
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
840
        self._port_set = set()
M
minqiyang 已提交
841
        self._python_interp = sys.executable
W
Wu Yi 已提交
842
        self._sync_mode = True
T
tangwei12 已提交
843
        self._hogwild_mode = False
844
        self._enforce_place = None
W
Wu Yi 已提交
845
        self._use_reduce = False
W
Wu Yi 已提交
846
        self._dc_asgd = False  # must use with async mode
847
        self._use_reader_alloc = True
W
Wu Yi 已提交
848
        self._nccl2_mode = False
849
        self._bkcl_mode = False
X
xiongkun 已提交
850
        self._gloo_mode = False  # now, support gloo backend
851
        self._hccl_mode = False
852
        self._cncl_mode = False
853
        self._pipeline_mode = False
854
        self._mp_mode = False
855
        self._diff_batch = False
W
Wu Yi 已提交
856 857 858 859 860
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
861
        self._lr = 0.001
862
        self._use_dgc = False
863
        self._dygraph = False
864
        self._nccl_comm_num = 1
865
        self._enable_backward_deps = False
866
        self._use_fleet_api = False
867
        self._use_fleet_api_20 = False
868 869
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
870
        self._use_hallreduce = False
871
        self._save_model = False
872
        self._fuse_all_reduce = None
873
        self._accumulate_gradient = False
874
        self._find_unused_parameters = False
W
Wu Yi 已提交
875
        self._setup_config()
876 877 878 879 880 881 882 883 884 885 886 887

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
888
            self._dist_port = DIST_UT_PORT
889

890
        self._after_setup_config()
X
Xin Pan 已提交
891

892 893 894 895 896
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
897
    def _find_free_port(self):
898

Y
Yancey1989 已提交
899 900 901 902
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
903
                print_to_err(
904
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
905 906 907 908 909 910 911
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
912

913 914 915 916 917
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
918
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
919 920 921 922 923 924 925 926
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
927
        ps0_cmd = ps_cmd % \
928 929
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
930
        ps1_cmd = ps_cmd % \
931 932
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
933 934 935 936

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
937

938 939
        print(ps0_cmd)
        print(ps1_cmd)
940 941 942 943
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
944

945
        print_to_err(type(self).__name__, "going to start pserver process 0")
946 947 948 949
        ps0_proc = subprocess.Popen(ps0_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=ps0_pipe,
                                    env=required_envs)
950
        print_to_err(type(self).__name__, "going to start pserver process 1")
951 952 953 954
        ps1_proc = subprocess.Popen(ps1_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=ps1_pipe,
                                    env=required_envs)
G
gongweibao 已提交
955

956
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
957

958 959 960 961 962
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
963
                   batch_merge_repeat=1,
964
                   log_name="",
X
xiongkun 已提交
965
                   devices="1"):
G
gongweibao 已提交
966

967 968 969 970 971 972
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

973 974
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
975

976 977 978 979
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
980 981
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
982

983
        if self.__use_cuda:
984
            cmd += " --use_cuda"
W
Wu Yi 已提交
985
            env_local = {
986 987 988 989 990 991 992 993
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
994 995 996
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
997 998 999 1000 1001 1002 1003
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
1004 1005 1006
        else:
            env_local = {'CPU_NUM': '1'}

1007
        # not use dgc in single card
1008
        if len(devices) > 1 and self._use_dgc:
1009 1010
            cmd += " --use_dgc"

1011 1012 1013
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1014 1015 1016
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1017 1018
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
1019

1020
        if check_error_log:
1021 1022
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1023 1024 1025 1026
            local_proc = subprocess.Popen(cmd.split(" "),
                                          stdout=subprocess.PIPE,
                                          stderr=err_log,
                                          env=env_local)
G
gongweibao 已提交
1027
        else:
1028 1029 1030 1031
            local_proc = subprocess.Popen(cmd.split(" "),
                                          stdout=subprocess.PIPE,
                                          stderr=subprocess.PIPE,
                                          env=env_local)
G
gongweibao 已提交
1032

1033 1034 1035 1036 1037 1038
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1039
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1040

W
Wu Yi 已提交
1041
        return pickle.loads(local_out)
1042

X
xiongkun 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1058
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1059
        # Run dist train to compare with local results
1060 1061 1062 1063
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model,
                                                          check_error_log,
                                                          envs,
                                                          log_name=log_name)
W
Wu Yi 已提交
1064

X
Xin Pan 已提交
1065
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1066

1067 1068 1069 1070 1071 1072 1073 1074
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1075
        tr0_cmd = tr_cmd % \
1076
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1077
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1078
        tr1_cmd = tr_cmd % \
1079
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1080
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1081 1082 1083 1084

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1085 1086 1087
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1088 1089 1090
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1091 1092 1093
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1094
        if self.__use_cuda:
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1105

W
Wu Yi 已提交
1106 1107
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1108 1109 1110 1111 1112

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1113

1114
        print_to_err(type(self).__name__, "going to start trainer process 0")
1115 1116 1117 1118
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)
1119
        print_to_err(type(self).__name__, "going to start trainer process 1")
1120 1121 1122 1123
        tr1_proc = subprocess.Popen(tr1_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
X
Xin Pan 已提交
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1137 1138
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1139

G
gongweibao 已提交
1140
        # close trainer file
1141 1142 1143 1144
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1145

W
Wu Yi 已提交
1146 1147
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1148

W
Wu Yi 已提交
1149 1150
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

X
xiongkun 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1173 1174
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
1191

X
xiongkun 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1210 1211 1212
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1213 1214 1215 1216 1217 1218 1219
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1220
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1221 1222
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1223 1224

        if self._use_reduce:
1225
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1226
        if self._use_reader_alloc:
1227
            tr_cmd += " --use_reader_alloc"
1228 1229
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1230
        if self.__use_cuda:
1231 1232
            tr_cmd += " --use_cuda"
            env.update({
1233
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1234
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1235
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1236 1237 1238
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1239
            })
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        elif self.__use_npu:
            tr_cmd += " --use_npu"
            env.update({
                "FLAGS_selected_npus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        elif self._use_mlu:
            tr_cmd += " --use_mlu"
            env.update({
                "FLAGS_selected_mlus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "4",
            })
W
Wu Yi 已提交
1273
        else:
1274
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1275

1276
        if self._use_dgc:
1277 1278
            tr_cmd += " --use_dgc"

1279 1280 1281
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1282 1283 1284
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1285 1286
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1287
        if self._mp_mode:
W
WangXi 已提交
1288
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1289 1290

        if self._nccl_comm_num > 1:
1291
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1292

1293 1294
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1295

1296
        if self._enable_backward_deps:
1297
            tr_cmd += " --enable_backward_deps"
1298

1299 1300 1301
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1302
        if self._use_fleet_api:
1303
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1304 1305 1306 1307
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1308 1309
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1310

1311 1312 1313
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1314
        return tr_cmd, env
W
Wu Yi 已提交
1315

X
xiongkun 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1328 1329 1330 1331
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(model,
                                                        worker_endpoints[i],
                                                        update_method, i,
                                                        trainer_num)
X
xiongkun 已提交
1332 1333 1334 1335 1336 1337
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

1338 1339 1340
            path = os.path.join(self.temp_dir.name,
                                log_name + "_tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1341 1342 1343 1344

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1345 1346 1347 1348
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
X
xiongkun 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1370 1371
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1372 1373
        if self._use_hallreduce:
            self._ps_endpoints = ""
1374 1375 1376

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1377
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1378 1379 1380 1381 1382 1383 1384
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1385
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1386

1387 1388
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1389

1390
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1391

1392 1393 1394 1395 1396 1397 1398 1399
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1400

1401 1402 1403
            path = os.path.join(self.temp_dir.name,
                                log_name + "_tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1404

1405
            print_to_err(
1406 1407
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1408 1409 1410 1411
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1423 1424 1425
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1426

1427
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

1448 1449
            path = os.path.join(self.temp_dir.name + "tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
1450 1451 1452 1453

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1454 1455 1456 1457
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1474
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1475 1476 1477 1478 1479 1480
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1481
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1482
            "FLAGS_rpc_retry_bind_port": "50",
1483
            "FLAGS_cudnn_deterministic": "1",
1484
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1485
            "http_proxy": "",
1486 1487
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1488 1489 1490
        }

        if check_error_log:
1491
            required_envs["GLOG_vmodule"] = \
1492 1493
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1494
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1495
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1496 1497
            required_envs["GLOG_logtostderr"] = "1"

1498 1499 1500 1501
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

1502 1503 1504 1505 1506 1507 1508 1509 1510
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1511
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
1512
            need_envs.update({"FLAGS_enable_eager_mode": "1"})
1513
            with _test_eager_guard():
1514 1515 1516 1517 1518
                self.check_with_place_func(model_file=model_file,
                                           delta=delta,
                                           check_error_log=check_error_log,
                                           need_envs=need_envs,
                                           log_name=log_name)
1519
            need_envs.update({"FLAGS_enable_eager_mode": "0"})
1520 1521 1522 1523 1524
            self.check_with_place_func(model_file=model_file,
                                       delta=delta,
                                       check_error_log=check_error_log,
                                       need_envs=need_envs,
                                       log_name=log_name)
1525
        else:
1526 1527 1528 1529 1530
            self.check_with_place_func(model_file=model_file,
                                       delta=delta,
                                       check_error_log=check_error_log,
                                       need_envs=need_envs,
                                       log_name=log_name)
1531 1532 1533 1534 1535 1536 1537

    def check_with_place_func(self,
                              model_file,
                              delta=1e-3,
                              check_error_log=False,
                              need_envs={},
                              log_name=""):
1538 1539
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1540 1541 1542 1543 1544 1545
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1546
            = self._run_local(model_file, required_envs,
1547 1548
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1549
        if self._nccl2_mode:
W
Wu Yi 已提交
1550 1551
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1552 1553
                    model_file,
                    required_envs,
1554 1555
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1556
                    log_name=log_name)
W
Wu Yi 已提交
1557 1558
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1559 1560
                    model_file,
                    required_envs,
1561 1562
                    update_method='nccl2',
                    check_error_log=check_error_log,
1563
                    log_name=log_name)
1564 1565 1566 1567 1568 1569 1570
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
X
xiongkun 已提交
1571 1572 1573 1574 1575 1576 1577 1578
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1579 1580 1581 1582 1583 1584 1585
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
                log_name=log_name)
1586 1587 1588 1589 1590 1591 1592
        elif self._cncl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='cncl',
                check_error_log=check_error_log,
                log_name=log_name)
1593
        elif self._pipeline_mode:
1594 1595 1596 1597
            tr0_losses, tr1_losses = self._run_pipeline(model_file,
                                                        required_envs,
                                                        check_error_log,
                                                        log_name=log_name)
W
Wu Yi 已提交
1598
        else:
1599 1600 1601 1602
            tr0_losses, tr1_losses = self._run_cluster(model_file,
                                                       required_envs,
                                                       check_error_log,
                                                       log_name=log_name)
1603 1604

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1605 1606 1607
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1608 1609 1610 1611
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1612 1613
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1614 1615 1616 1617 1618 1619 1620

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1621

1622 1623 1624 1625 1626 1627
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1628 1629 1630 1631 1632 1633
            multi_cards_losses = self._run_local(model_file,
                                                 required_envs,
                                                 check_error_log,
                                                 log_name=log_name +
                                                 "_dgc_2cards",
                                                 devices="0,1")
1634 1635

            self._use_dgc = False
1636 1637 1638 1639 1640
            base_losses = self._run_local(model_file,
                                          required_envs,
                                          check_error_log,
                                          log_name=log_name + "_base_2cards",
                                          devices="0,1")
1641 1642 1643 1644 1645 1646 1647 1648

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)