test_dist_base.py 48.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46 47 48 49 50 51 52 53
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
54 55
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
56
    if six.PY2:
57
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
58
    else:
59
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
60 61


62 63 64 65
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
66
class TestDistRunnerBase(object):
W
Wu Yi 已提交
67 68 69
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
70 71
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
72 73 74
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

75
    @staticmethod
W
Wu Yi 已提交
76 77 78 79 80
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
81
                       dc_asgd=False,
82
                       current_endpoint=None,
T
tangwei12 已提交
83 84
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
85
        # NOTE: import fluid until runtime, or else forking processes will cause error.
86
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
87
        config.enable_dc_asgd = dc_asgd
88
        config.sync_mode = sync_mode
T
tangwei12 已提交
89 90
        config.runtime_split_send_recv = hogwild_mode

91 92
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
93
        # config.runtime_split_send_recv = True
94
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
95 96 97 98
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
99
            trainers=trainers,
T
tangwei12 已提交
100
            sync_mode=sync_mode,
101
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
102 103
        return t

W
Wu Yi 已提交
104
    def run_pserver(self, args):
W
Wu Yi 已提交
105
        self.lr = args.lr
106
        self.get_model(batch_size=args.batch_size)
107
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
117 118 119
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
120

T
typhoonzero 已提交
121 122 123
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
124
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
125
        exe.run(pserver_prog)
126
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

189 190
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
191 192 193 194 195 196 197 198

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
199
        dist_strategy.fuse_memory_size = 1  # MB
200
        dist_strategy.fuse_laryer_size = 1
201 202 203 204
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
205 206
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
207 208 209

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
210
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
211 212
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
213 214

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
215
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
216 217 218 219

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

220 221 222 223 224 225 226 227 228 229
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
230 231 232 233 234 235 236 237 238 239

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

240 241 242 243 244 245 246
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

247 248 249 250 251 252 253 254 255 256 257 258 259 260
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

261
        print_to_err(type(self).__name__, "begin to train on trainer")
262 263 264 265 266 267
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
268 269
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
270 271 272 273 274 275

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

306
    def run_trainer(self, args):
W
Wu Yi 已提交
307
        self.lr = args.lr
W
Wu Yi 已提交
308 309 310
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
311 312 313
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
314 315 316
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
317

W
Wu Yi 已提交
318
        if args.update_method == "pserver":
319
            print_to_err(
320 321
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
322 323 324 325 326 327 328 329 330
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
331
            trainer_prog = t.get_trainer_program()
332
            print_to_err(
333 334
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
335
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
336 337 338
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
339
            config.nccl_comm_num = args.nccl_comm_num
340 341 342
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
343
            print_to_err(
344 345
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
346 347 348 349 350 351 352
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
353
            print_to_err(
354 355
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
356
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
357
        else:
358
            print_to_err(
359 360
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
361
            trainer_prog = fluid.default_main_program()
362
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
363

364 365 366
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

367
        if args.use_cuda:
368 369
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
370 371 372
        else:
            place = fluid.CPUPlace()

373 374
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
375
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
376

W
Wu Yi 已提交
377 378
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
379

W
Wu Yi 已提交
380
        build_stra = fluid.BuildStrategy()
381 382 383
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
384

385 386 387 388
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
389 390 391
        if args.hogwild:
            build_stra.async_mode = True

392 393 394
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
395 396 397 398 399
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
400
        pass_builder = None
X
Xin Pan 已提交
401
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
402
            pass_builder = build_stra._finalize_strategy_and_create_passes()
403
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
404
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
405

W
Wu Yi 已提交
406
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
407 408
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
409
        else:
W
Wu Yi 已提交
410
            # case args.update_method == "nccl2_reduce_layer":
411 412
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
413

414
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
415
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
416
            loss_name=avg_cost.name,
W
Wu Yi 已提交
417
            build_strategy=build_stra,
W
Wu Yi 已提交
418
            exec_strategy=exec_strategy)
419
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
420 421 422 423 424 425 426

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
427
        reader_generator = train_reader()
T
typhoonzero 已提交
428

429 430
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
431
            if args.update_method != "local" and args.use_reader_alloc:
432 433 434 435 436 437 438
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
439

440
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
441
        out_losses = []
442
        for i in six.moves.xrange(RUN_STEP):
443 444
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
445
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
446
            out_losses.append(loss[0])
447 448
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
449

450
        print_to_out(out_losses)
T
typhoonzero 已提交
451 452


453 454 455 456 457 458 459 460 461
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

462 463 464 465 466 467 468 469 470 471
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

472
    def run_trainer(self, args):
Y
Yan Xu 已提交
473

474
        seed = 90
475 476 477 478 479 480 481 482
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
483 484 485 486

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
487 488
            np.random.seed(seed)
            import random
489
            random.seed(seed)
490 491
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
492

493 494
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
495 496 497 498 499
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
500
                print_to_err(
501 502
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
503
                dygraph.parallel.prepare_context(strategy)
504 505 506 507 508 509
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
510
                print_to_err(type(self).__name__, "model built in dygraph")
511
            out_losses = []
512
            print_to_err(type(self).__name__, "begin to run dygraph training")
513
            for step_id, data in enumerate(train_reader()):
514
                data = self._get_data(data, args)
515 516 517
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
518
                if step_id % 10 == 0:
519
                    print_to_err(
520
                        type(self).__name__,
521
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
522
                out_losses.append(loss.numpy())
523 524 525 526

                loss.backward()

                opt.minimize(loss)
527 528
                if not args.accumulate_gradient:
                    model.clear_gradients()
529
        print_to_out(out_losses)
530

531 532 533 534 535 536 537 538 539
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
540
        random.seed(seed)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            model = paddle.DataParallel(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

567
    def run_use_fleet_api_trainer(self, args):
568 569 570 571 572 573 574 575 576 577
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
578
        random.seed(seed)
579 580 581
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

582 583 584 585 586
        # set strategy
        strategy = fleet.DistributedStrategy()
        if not args.find_unused_parameters:
            strategy.find_unused_parameters = False

587
        # 3. init parallel env
588
        if args.update_method == "nccl2" or "bkcl":
589
            fleet.init(is_collective=True, strategy=strategy)
590 591 592

        # 4. train model
        model, train_reader, opt = self.get_model()
593
        if args.update_method == "nccl2" or "bkcl":
594 595 596 597 598 599 600 601 602 603 604 605 606 607
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
608 609
            if not args.accumulate_gradient:
                opt.clear_grad()
610 611
        print_to_out(out_losses)

612

T
typhoonzero 已提交
613
def runtime_main(test_class):
W
Wu Yi 已提交
614 615 616 617
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
618 619 620 621
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
622
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
623 624
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
625
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
626 627
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
628
    parser.add_argument('--use_pipeline', action='store_true')
629
    parser.add_argument('--use_fleet_api', action='store_true')
630 631
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
632
    parser.add_argument(
633
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
634 635 636
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
637
    parser.add_argument('--use_cuda', action='store_true')
638
    parser.add_argument('--use_xpu', action='store_true')
639
    parser.add_argument('--use_dgc', action='store_true')
640
    parser.add_argument('--accumulate_gradient', action='store_true')
641
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
642
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
643
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
644
    parser.add_argument('--hogwild', action='store_true')
645
    parser.add_argument('--save_model', action='store_true')
646
    parser.add_argument(
W
Wu Yi 已提交
647
        '--use_reader_alloc', action='store_true', required=False)
648
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
649
    parser.add_argument('--lr', required=False, type=float, default=0.001)
650 651
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
652 653 654 655 656
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
657
    parser.add_argument('--sync_batch_norm', action='store_true')
658 659 660 661 662
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
663 664

    args = parser.parse_args()
T
typhoonzero 已提交
665 666

    model = test_class()
W
Wu Yi 已提交
667
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
668
        model.run_pserver(args)
669 670
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
671 672
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
673
    else:
674
        model.run_trainer(args)
X
Xin Pan 已提交
675

M
minqiyang 已提交
676

M
minqiyang 已提交
677
import paddle.compat as cpt
Y
Yancey1989 已提交
678 679
import socket
from contextlib import closing
M
minqiyang 已提交
680

X
Xin Pan 已提交
681 682

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
683 684 685
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

686 687 688
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
689
            self.__use_xpu = False
690
            self._use_dgc = False
691 692
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
693 694 695 696 697
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
698 699 700 701 702
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
703 704 705 706
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
707

X
Xin Pan 已提交
708 709 710
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
711
        self._port_set = set()
M
minqiyang 已提交
712
        self._python_interp = sys.executable
W
Wu Yi 已提交
713
        self._sync_mode = True
T
tangwei12 已提交
714
        self._hogwild_mode = False
715
        self._enforce_place = None
W
Wu Yi 已提交
716
        self._use_reduce = False
W
Wu Yi 已提交
717
        self._dc_asgd = False  # must use with async mode
718
        self._use_reader_alloc = True
W
Wu Yi 已提交
719
        self._nccl2_mode = False
720
        self._bkcl_mode = False
721
        self._pipeline_mode = False
722
        self._mp_mode = False
W
Wu Yi 已提交
723 724 725 726 727
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
728
        self._lr = 0.001
729
        self._use_dgc = False
730
        self._dygraph = False
731
        self._nccl_comm_num = 1
732
        self._enable_backward_deps = False
733
        self._use_fleet_api = False
734 735
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
736
        self._use_hallreduce = False
737
        self._save_model = False
738
        self._fuse_all_reduce = None
739
        self._accumulate_gradient = False
740
        self._find_unused_parameters = True
W
Wu Yi 已提交
741
        self._setup_config()
742 743 744 745 746 747 748 749 750 751 752 753 754 755

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

756
        self._after_setup_config()
X
Xin Pan 已提交
757

Y
Yancey1989 已提交
758
    def _find_free_port(self):
Y
Yancey1989 已提交
759 760 761 762
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
763
                print_to_err(
764
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
765 766 767 768 769 770 771
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
772

773 774 775 776 777
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
778
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
779 780 781 782 783 784 785 786
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
787
        ps0_cmd = ps_cmd % \
788 789
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
790
        ps1_cmd = ps_cmd % \
791 792
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
793 794 795 796

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
797

798 799
        print(ps0_cmd)
        print(ps1_cmd)
800 801
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
802

803
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
804
        ps0_proc = subprocess.Popen(
805 806 807 808
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
809
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
810
        ps1_proc = subprocess.Popen(
811 812 813 814
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
815

816
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
817

818 819 820 821 822
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
823
                   batch_merge_repeat=1,
824
                   log_name="",
825
                   devices="0"):
G
gongweibao 已提交
826

827 828 829 830 831 832
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

833 834
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
835

836 837 838 839
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
840 841
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
842

843
        if self.__use_cuda:
844
            cmd += " --use_cuda"
W
Wu Yi 已提交
845
            env_local = {
846 847 848 849 850 851 852 853
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
854 855 856
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
857 858 859
        else:
            env_local = {'CPU_NUM': '1'}

860
        # not use dgc in single card
861
        if len(devices) > 1 and self._use_dgc:
862 863
            cmd += " --use_dgc"

864 865 866
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

867 868 869
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
870 871
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
872

873
        if check_error_log:
874
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
875
            local_proc = subprocess.Popen(
876
                cmd.split(" "),
G
gongweibao 已提交
877
                stdout=subprocess.PIPE,
878
                stderr=err_log,
W
Wu Yi 已提交
879
                env=env_local)
G
gongweibao 已提交
880 881
        else:
            local_proc = subprocess.Popen(
882
                cmd.split(" "),
G
gongweibao 已提交
883
                stdout=subprocess.PIPE,
884
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
885
                env=env_local)
G
gongweibao 已提交
886

887 888 889 890 891 892
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
893
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
894

W
Wu Yi 已提交
895
        return pickle.loads(local_out)
896

897
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
898
        # Run dist train to compare with local results
899 900
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
901

X
Xin Pan 已提交
902
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
903

904 905 906 907 908 909 910 911
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
912
        tr0_cmd = tr_cmd % \
913
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
914
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
915
        tr1_cmd = tr_cmd % \
916
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
917
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
918 919 920 921

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
922 923 924
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
925 926 927
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
928 929 930
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
931
        if self.__use_cuda:
932 933 934 935 936 937 938 939 940 941
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
942

W
Wu Yi 已提交
943 944
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
945 946
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
947

948
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
949
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
950
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
951
            stdout=subprocess.PIPE,
G
gongweibao 已提交
952
            stderr=tr0_pipe,
X
Xin Pan 已提交
953
            env=env0)
954
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
955
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
956
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
957
            stdout=subprocess.PIPE,
G
gongweibao 已提交
958
            stderr=tr1_pipe,
X
Xin Pan 已提交
959 960
            env=env1)

961 962 963 964 965 966 967 968 969 970 971 972
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

973 974
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
975

G
gongweibao 已提交
976
        # close trainer file
977 978 979 980
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
981

W
Wu Yi 已提交
982 983
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
984

W
Wu Yi 已提交
985 986
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

987 988 989
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
990 991 992 993 994 995 996
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

997
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
998 999
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1000 1001

        if self._use_reduce:
1002
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1003
        if self._use_reader_alloc:
1004
            tr_cmd += " --use_reader_alloc"
1005 1006
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1007
        if self.__use_cuda:
1008 1009
            tr_cmd += " --use_cuda"
            env.update({
1010
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1011
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1012
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1013 1014 1015
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1016
            })
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1030
        else:
1031
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1032

1033
        if self._use_dgc:
1034 1035
            tr_cmd += " --use_dgc"

1036 1037 1038
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1039 1040 1041
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1042 1043
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1044
        if self._mp_mode:
W
WangXi 已提交
1045
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1046 1047

        if self._nccl_comm_num > 1:
1048
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1049

1050 1051
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1052

1053
        if self._enable_backward_deps:
1054
            tr_cmd += " --enable_backward_deps"
1055

1056 1057 1058
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1059 1060
        if self._use_fleet_api:
            tr_cmd += " --use_fleet_api"
1061 1062 1063 1064
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1065 1066
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1067

1068 1069 1070
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1071
        return tr_cmd, env
W
Wu Yi 已提交
1072

1073 1074
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1075 1076
        if self._use_hallreduce:
            self._ps_endpoints = ""
1077 1078 1079

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1080
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1081 1082 1083 1084 1085 1086 1087
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1088
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1089

1090 1091
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1092

1093
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1094

1095 1096 1097 1098 1099 1100 1101 1102
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1103

1104
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1105

1106
            print_to_err(
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1125 1126 1127
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1128
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1175
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1176 1177 1178 1179 1180 1181
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1182
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1183
            "FLAGS_rpc_retry_bind_port": "50",
1184
            "FLAGS_cudnn_deterministic": "1",
1185
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1186
            "http_proxy": "",
1187 1188
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1189 1190 1191
        }

        if check_error_log:
1192
            required_envs["GLOG_vmodule"] = \
1193 1194
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1195 1196
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1197 1198
            required_envs["GLOG_logtostderr"] = "1"

1199 1200 1201 1202 1203 1204 1205 1206 1207
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1208

1209 1210
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1211
        local_losses \
1212
            = self._run_local(model_file, required_envs,
1213 1214
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1215
        if self._nccl2_mode:
W
Wu Yi 已提交
1216 1217
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1218 1219
                    model_file,
                    required_envs,
1220 1221
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1222
                    log_name=log_name)
W
Wu Yi 已提交
1223 1224
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1225 1226
                    model_file,
                    required_envs,
1227 1228
                    update_method='nccl2',
                    check_error_log=check_error_log,
1229
                    log_name=log_name)
1230 1231 1232 1233 1234 1235 1236 1237
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1238 1239 1240
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1241 1242
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1243
                model_file, required_envs, check_error_log, log_name=log_name)
1244 1245

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1246 1247 1248
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1249 1250 1251 1252
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1253 1254
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1255 1256 1257 1258 1259 1260 1261

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1274
                devices="0,1")
1275 1276 1277 1278 1279 1280 1281

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1282
                devices="0,1")
1283 1284 1285 1286 1287 1288 1289 1290

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)