test_dist_base.py 60.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34
import paddle.fluid.core as core
35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
37 38
from paddle.fluid.dygraph.parallel import DataParallel, ParallelEnv
from paddle.fluid.framework import _test_eager_guard
39 40 41
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
42
RUN_STEP = 5
43
DEFAULT_BATCH_SIZE = 2
44
DIST_UT_PORT = 0
45

T
typhoonzero 已提交
46

47
def print_to_out(out_losses):
T
tianshuo78520a 已提交
48
    sys.stdout.buffer.write(pickle.dumps(out_losses))
49 50 51


def print_to_err(class_name, log_str):
52 53
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
54
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
55 56


57 58 59 60
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
61
class TestDistRunnerBase(object):
W
Wu Yi 已提交
62 63 64
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
65
                  single_device=False,
J
Jiangxinz 已提交
66 67
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
68 69 70
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

71
    @staticmethod
W
Wu Yi 已提交
72 73 74 75 76
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
77
                       dc_asgd=False,
78
                       current_endpoint=None,
T
tangwei12 已提交
79 80
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
81
        # NOTE: import fluid until runtime, or else forking processes will cause error.
82
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
83
        config.enable_dc_asgd = dc_asgd
84
        config.sync_mode = sync_mode
T
tangwei12 已提交
85 86
        config.runtime_split_send_recv = hogwild_mode

87 88
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
89
        # config.runtime_split_send_recv = True
90
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
91 92 93 94
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
95
            trainers=trainers,
T
tangwei12 已提交
96
            sync_mode=sync_mode,
97
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
98 99
        return t

100 101 102 103 104 105 106 107 108
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
109
    def run_pserver(self, args):
W
Wu Yi 已提交
110
        self.lr = args.lr
111
        self.get_model(batch_size=args.batch_size)
112
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
113 114 115 116 117 118 119 120 121

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
122 123 124
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
125

T
typhoonzero 已提交
126 127 128
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
129
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
130
        exe.run(pserver_prog)
131
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
152 153 154

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
155
        for i in six.moves.xrange(RUN_STEP):
156
            loss = exe.run(main_program, fetch_list=[avg_cost])
157 158 159
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
160 161 162
            if lr_sheduler is not None:
                lr_sheduler.step()

163
        data_loader.reset()
164 165
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
166
        sys.stdout.buffer.write(pickle.dumps(out_losses))
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
X
xiongkun 已提交
213 214 215 216 217
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
237
        sys.stdout.buffer.write(pickle.dumps(out_losses))
238

239 240
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
241 242 243 244 245 246 247 248

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
249
        dist_strategy.fuse_memory_size = 1  # MB
250
        dist_strategy.fuse_laryer_size = 1
251 252 253 254
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
255 256
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
257 258 259

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
260
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
261 262
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
263 264

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
265
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
266 267 268 269

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

270 271 272 273 274 275 276 277 278 279
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
280 281 282 283 284 285 286 287 288 289

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

290 291 292 293 294 295 296
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

297 298 299 300 301 302 303 304 305 306 307 308 309 310
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

311
        print_to_err(type(self).__name__, "begin to train on trainer")
312 313 314 315 316 317
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
318 319
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
320

T
tianshuo78520a 已提交
321
        sys.stdout.buffer.write(pickle.dumps(out_losses))
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

353
    def run_trainer(self, args):
W
Wu Yi 已提交
354
        self.lr = args.lr
W
Wu Yi 已提交
355 356 357
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
358 359 360
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
361 362 363
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
364

W
Wu Yi 已提交
365
        if args.update_method == "pserver":
366
            print_to_err(
367 368
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
369 370 371 372 373 374 375 376 377
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
378
            trainer_prog = t.get_trainer_program()
379
            print_to_err(
380 381
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
382
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
383 384 385
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
386
            config.nccl_comm_num = args.nccl_comm_num
387 388 389
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
390
            print_to_err(
391 392
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
393 394 395 396 397 398 399
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
400
            print_to_err(
401 402
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
403
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
404
        else:
405
            print_to_err(
406 407
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
408
            trainer_prog = fluid.default_main_program()
409
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
410

411 412 413
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

414
        if args.use_cuda:
415 416
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
417 418 419
        else:
            place = fluid.CPUPlace()

420 421
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
422
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
423

W
Wu Yi 已提交
424 425
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
426

W
Wu Yi 已提交
427
        build_stra = fluid.BuildStrategy()
428 429 430
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
431

432 433 434 435
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
436 437 438
        if args.hogwild:
            build_stra.async_mode = True

439 440 441
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
442 443 444 445 446
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
447
        pass_builder = None
X
Xin Pan 已提交
448
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
449
            pass_builder = build_stra._finalize_strategy_and_create_passes()
450
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
451
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
452

W
Wu Yi 已提交
453
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
454 455
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
456
        else:
W
Wu Yi 已提交
457
            # case args.update_method == "nccl2_reduce_layer":
458 459
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
460

461
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
462
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
463
            loss_name=avg_cost.name,
W
Wu Yi 已提交
464
            build_strategy=build_stra,
W
Wu Yi 已提交
465
            exec_strategy=exec_strategy)
466
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
467 468 469 470 471 472 473

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
474
        reader_generator = train_reader()
T
typhoonzero 已提交
475

476 477
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
478
            if args.update_method != "local" and args.use_reader_alloc:
479 480 481 482 483 484 485
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
486

487
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
488
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
489
        out_losses = []
490
        for i in six.moves.xrange(RUN_STEP):
491 492
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
493
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
494
            out_losses.append(loss[0])
495
            print_to_err(type(self).__name__, "run step %d finished" % i)
496 497 498
            if lr_scheduler is not None:
                lr_scheduler.step()

499
        print_to_err(type(self).__name__, "trainer run finished")
500

501
        print_to_out(out_losses)
T
typhoonzero 已提交
502 503


504 505 506 507 508 509 510 511 512
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

513
    def _get_data(self, batch, args):
X
xiongkun 已提交
514 515 516 517
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
518
            new_batch = []
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

            # NOTE(@xiongkun03) args.diff_batch means batch length is different: 
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and 
            # the second rank will get [3,4,5]. 
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
541 542 543
        else:
            return batch

544 545
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
546 547 548
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
549 550 551 552 553
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
554 555 556
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
557
        else:
X
xiongkun 已提交
558
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
559 560 561 562

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
563 564
            np.random.seed(seed)
            import random
565
            random.seed(seed)
566 567
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
568

569
            #if args.update_method == "nccl2":
570
            if args.update_method == "nccl2" or args.update_method == "bkcl" or args.update_method == "hccl":
571 572 573 574 575
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
576
                paddle.distributed.init_parallel_env()
577
                print_to_err(
578 579
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
580
                dygraph.parallel.prepare_context(strategy)
581 582 583 584 585 586
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
587
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
588 589 590 591 592 593 594 595 596 597

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

598
            out_losses = []
599
            print_to_err(type(self).__name__, "begin to run dygraph training")
600
            for step_id, data in enumerate(train_reader()):
601
                data = self._get_data(data, args)
602 603 604
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
605
                if step_id % 10 == 0:
606
                    print_to_err(
607
                        type(self).__name__,
608
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
609
                out_losses.append(loss.numpy())
610 611 612 613

                loss.backward()

                opt.minimize(loss)
614 615
                if not args.accumulate_gradient:
                    model.clear_gradients()
616
        print_to_out(out_losses)
617

618 619 620 621 622 623 624 625 626
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
627
        random.seed(seed)
628 629 630 631
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
X
xiongkun 已提交
632
        if args.update_method in ["nccl2", "gloo"]:
633 634 635 636
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
637
        if args.update_method in ["nccl2", "gloo"]:
638 639
            model = paddle.DataParallel(
                model, find_unused_parameters=args.find_unused_parameters)
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

655
    def run_use_fleet_api_trainer(self, args):
656 657 658 659 660 661 662 663 664 665
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
666
        random.seed(seed)
667 668 669
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

670 671
        # set strategy
        strategy = fleet.DistributedStrategy()
672 673
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
674

675
        # 3. init parallel env
676
        if args.update_method == "nccl2" or "bkcl" or "hccl":
677
            fleet.init(is_collective=True, strategy=strategy)
678 679 680

        # 4. train model
        model, train_reader, opt = self.get_model()
681
        if args.update_method == "nccl2" or "bkcl" or "hccl":
682 683 684 685 686 687 688 689 690 691 692 693 694 695
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
696 697
            if not args.accumulate_gradient:
                opt.clear_grad()
698 699
        print_to_out(out_losses)

700

T
typhoonzero 已提交
701
def runtime_main(test_class):
W
Wu Yi 已提交
702 703 704 705
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
706 707 708 709
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
X
xiongkun 已提交
710
        choices=[
711 712
            "pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer", "gloo",
            "hccl"
X
xiongkun 已提交
713
        ])
W
Wu Yi 已提交
714 715
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
716
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
717 718
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
719
    parser.add_argument('--use_pipeline', action='store_true')
720
    parser.add_argument('--use_fleet_api', action='store_true')
721
    parser.add_argument('--use_fleet_api_20', action='store_true')
722
    parser.add_argument('--use_local_sgd', action='store_true')
723
    parser.add_argument('--diff_batch', action='store_true')
724
    parser.add_argument('--ut4grad_allreduce', action='store_true')
725
    parser.add_argument(
726
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
727 728 729
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
730
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
731
    parser.add_argument('--use_cpu', action='store_true')
732
    parser.add_argument('--use_xpu', action='store_true')
733
    parser.add_argument('--use_dgc', action='store_true')
734
    parser.add_argument('--use_npu', action='store_true')
735
    parser.add_argument('--accumulate_gradient', action='store_true')
736
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
737
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
738
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
739
    parser.add_argument('--hogwild', action='store_true')
740
    parser.add_argument('--save_model', action='store_true')
741
    parser.add_argument(
W
Wu Yi 已提交
742
        '--use_reader_alloc', action='store_true', required=False)
743
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
744
    parser.add_argument('--lr', required=False, type=float, default=0.001)
745 746
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
747 748 749 750 751
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
752
    parser.add_argument('--sync_batch_norm', action='store_true')
753 754 755 756 757
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
758 759

    args = parser.parse_args()
T
typhoonzero 已提交
760

X
xiongkun 已提交
761 762 763
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
764
    model = test_class()
W
Wu Yi 已提交
765
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
766
        model.run_pserver(args)
767 768
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
769 770
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
771 772
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
773
    else:
774
        model.run_trainer(args)
X
Xin Pan 已提交
775

M
minqiyang 已提交
776

M
minqiyang 已提交
777
import paddle.compat as cpt
Y
Yancey1989 已提交
778 779
import socket
from contextlib import closing
M
minqiyang 已提交
780

X
Xin Pan 已提交
781 782

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
783 784 785
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

786 787 788
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
789
            self.__use_xpu = False
790
            self._use_dgc = False
791
            self.__use_npu = False
792 793
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
794
            self.__use_xpu = False
795
            self.__use_npu = False
796 797 798 799
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
800 801 802 803 804 805
            self.__use_npu = False
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
806 807 808 809 810
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
811 812 813 814
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
815

X
Xin Pan 已提交
816 817 818
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
819
        self._port_set = set()
M
minqiyang 已提交
820
        self._python_interp = sys.executable
W
Wu Yi 已提交
821
        self._sync_mode = True
T
tangwei12 已提交
822
        self._hogwild_mode = False
823
        self._enforce_place = None
W
Wu Yi 已提交
824
        self._use_reduce = False
W
Wu Yi 已提交
825
        self._dc_asgd = False  # must use with async mode
826
        self._use_reader_alloc = True
W
Wu Yi 已提交
827
        self._nccl2_mode = False
828
        self._bkcl_mode = False
X
xiongkun 已提交
829
        self._gloo_mode = False  # now, support gloo backend
830
        self._hccl_mode = False
831
        self._pipeline_mode = False
832
        self._mp_mode = False
833
        self._diff_batch = False
W
Wu Yi 已提交
834 835 836 837 838
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
839
        self._lr = 0.001
840
        self._use_dgc = False
841
        self._dygraph = False
842
        self._nccl_comm_num = 1
843
        self._enable_backward_deps = False
844
        self._use_fleet_api = False
845
        self._use_fleet_api_20 = False
846 847
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
848
        self._use_hallreduce = False
849
        self._save_model = False
850
        self._fuse_all_reduce = None
851
        self._accumulate_gradient = False
852
        self._find_unused_parameters = False
W
Wu Yi 已提交
853
        self._setup_config()
854 855 856 857 858 859 860 861 862 863 864 865

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
866
            self._dist_port = DIST_UT_PORT
867

868
        self._after_setup_config()
X
Xin Pan 已提交
869

Y
Yancey1989 已提交
870
    def _find_free_port(self):
Y
Yancey1989 已提交
871 872 873 874
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
875
                print_to_err(
876
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
877 878 879 880 881 882 883
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
884

885 886 887 888 889
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
890
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
891 892 893 894 895 896 897 898
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
899
        ps0_cmd = ps_cmd % \
900 901
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
902
        ps1_cmd = ps_cmd % \
903 904
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
905 906 907 908

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
909

910 911
        print(ps0_cmd)
        print(ps1_cmd)
912 913
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
914

915
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
916
        ps0_proc = subprocess.Popen(
917 918 919 920
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
921
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
922
        ps1_proc = subprocess.Popen(
923 924 925 926
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
927

928
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
929

930 931 932 933 934
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
935
                   batch_merge_repeat=1,
936
                   log_name="",
X
xiongkun 已提交
937
                   devices="1"):
G
gongweibao 已提交
938

939 940 941 942 943 944
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

945 946
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
947

948 949 950 951
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
952 953
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
954

955
        if self.__use_cuda:
956
            cmd += " --use_cuda"
W
Wu Yi 已提交
957
            env_local = {
958 959 960 961 962 963 964 965
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
966 967 968
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
969 970 971 972 973 974 975
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
976 977 978
        else:
            env_local = {'CPU_NUM': '1'}

979
        # not use dgc in single card
980
        if len(devices) > 1 and self._use_dgc:
981 982
            cmd += " --use_dgc"

983 984 985
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

986 987 988
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
989 990
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
991

992
        if check_error_log:
993
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
994
            local_proc = subprocess.Popen(
995
                cmd.split(" "),
G
gongweibao 已提交
996
                stdout=subprocess.PIPE,
997
                stderr=err_log,
W
Wu Yi 已提交
998
                env=env_local)
G
gongweibao 已提交
999 1000
        else:
            local_proc = subprocess.Popen(
1001
                cmd.split(" "),
G
gongweibao 已提交
1002
                stdout=subprocess.PIPE,
1003
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
1004
                env=env_local)
G
gongweibao 已提交
1005

1006 1007 1008 1009 1010 1011
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1012
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1013

W
Wu Yi 已提交
1014
        return pickle.loads(local_out)
1015

X
xiongkun 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1031
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1032
        # Run dist train to compare with local results
1033 1034
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
1035

X
Xin Pan 已提交
1036
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1037

1038 1039 1040 1041 1042 1043 1044 1045
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1046
        tr0_cmd = tr_cmd % \
1047
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1048
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1049
        tr1_cmd = tr_cmd % \
1050
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1051
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1052 1053 1054 1055

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1056 1057 1058
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1059 1060 1061
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1062 1063 1064
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1065
        if self.__use_cuda:
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1076

W
Wu Yi 已提交
1077 1078
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1079 1080
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1081

1082
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1083
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1084
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1085
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1086
            stderr=tr0_pipe,
X
Xin Pan 已提交
1087
            env=env0)
1088
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1089
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1090
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1091
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1092
            stderr=tr1_pipe,
X
Xin Pan 已提交
1093 1094
            env=env1)

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1107 1108
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1109

G
gongweibao 已提交
1110
        # close trainer file
1111 1112 1113 1114
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1115

W
Wu Yi 已提交
1116 1117
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1118

W
Wu Yi 已提交
1119 1120
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

X
xiongkun 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1143 1144
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
1161

X
xiongkun 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1180 1181 1182
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1183 1184 1185 1186 1187 1188 1189
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1190
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1191 1192
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1193 1194

        if self._use_reduce:
1195
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1196
        if self._use_reader_alloc:
1197
            tr_cmd += " --use_reader_alloc"
1198 1199
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1200
        if self.__use_cuda:
1201 1202
            tr_cmd += " --use_cuda"
            env.update({
1203
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1204
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1205
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1206 1207 1208
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1209
            })
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        elif self.__use_npu:
            tr_cmd += " --use_npu"
            env.update({
                "FLAGS_selected_npus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1233
        else:
1234
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1235

1236
        if self._use_dgc:
1237 1238
            tr_cmd += " --use_dgc"

1239 1240 1241
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1242 1243 1244
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1245 1246
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1247
        if self._mp_mode:
W
WangXi 已提交
1248
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1249 1250

        if self._nccl_comm_num > 1:
1251
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1252

1253 1254
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1255

1256
        if self._enable_backward_deps:
1257
            tr_cmd += " --enable_backward_deps"
1258

1259 1260 1261
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1262
        if self._use_fleet_api:
1263
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1264 1265 1266 1267
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1268 1269
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1270

1271 1272 1273
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1274
        return tr_cmd, env
W
Wu Yi 已提交
1275

X
xiongkun 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1327 1328
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1329 1330
        if self._use_hallreduce:
            self._ps_endpoints = ""
1331 1332 1333

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1334
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1335 1336 1337 1338 1339 1340 1341
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1342
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1343

1344 1345
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1346

1347
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1348

1349 1350 1351 1352 1353 1354 1355 1356
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1357

1358
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1359

1360
            print_to_err(
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1379 1380 1381
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1382

1383
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1430
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1431 1432 1433 1434 1435 1436
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1437
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1438
            "FLAGS_rpc_retry_bind_port": "50",
1439
            "FLAGS_cudnn_deterministic": "1",
1440
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1441
            "http_proxy": "",
1442 1443
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1444 1445 1446
        }

        if check_error_log:
1447
            required_envs["GLOG_vmodule"] = \
1448 1449
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1450
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1451
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1452 1453
            required_envs["GLOG_logtostderr"] = "1"

1454 1455 1456 1457 1458 1459 1460 1461 1462
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
            with _test_eager_guard():
                self.check_with_place_func(
                    model_file=model_file,
                    delta=delta,
                    check_error_log=check_error_log,
                    need_envs=need_envs,
                    log_name=log_name)
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name)
        else:
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name)

    def check_with_place_func(self,
                              model_file,
                              delta=1e-3,
                              check_error_log=False,
                              need_envs={},
                              log_name=""):
1491 1492
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1493 1494 1495 1496 1497 1498
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1499
            = self._run_local(model_file, required_envs,
1500 1501
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1502
        if self._nccl2_mode:
W
Wu Yi 已提交
1503 1504
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1505 1506
                    model_file,
                    required_envs,
1507 1508
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1509
                    log_name=log_name)
W
Wu Yi 已提交
1510 1511
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1512 1513
                    model_file,
                    required_envs,
1514 1515
                    update_method='nccl2',
                    check_error_log=check_error_log,
1516
                    log_name=log_name)
1517 1518 1519 1520 1521 1522 1523
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
X
xiongkun 已提交
1524 1525 1526 1527 1528 1529 1530 1531
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1532 1533 1534 1535 1536 1537 1538
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
                log_name=log_name)
1539

1540 1541 1542
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1543 1544
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1545
                model_file, required_envs, check_error_log, log_name=log_name)
1546 1547

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1548 1549 1550
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1551 1552 1553 1554
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1555 1556
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1557 1558 1559 1560 1561 1562 1563

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1576
                devices="0,1")
1577 1578 1579 1580 1581 1582 1583

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1584
                devices="0,1")
1585 1586 1587 1588 1589 1590 1591 1592

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)