test_dist_base.py 52.0 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46 47 48 49 50 51 52 53
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
54 55
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
56
    if six.PY2:
57
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
58
    else:
59
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
60 61


62 63 64 65
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
66
class TestDistRunnerBase(object):
W
Wu Yi 已提交
67 68 69
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
70 71
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
72 73 74
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

75
    @staticmethod
W
Wu Yi 已提交
76 77 78 79 80
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
81
                       dc_asgd=False,
82
                       current_endpoint=None,
T
tangwei12 已提交
83 84
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
85
        # NOTE: import fluid until runtime, or else forking processes will cause error.
86
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
87
        config.enable_dc_asgd = dc_asgd
88
        config.sync_mode = sync_mode
T
tangwei12 已提交
89 90
        config.runtime_split_send_recv = hogwild_mode

91 92
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
93
        # config.runtime_split_send_recv = True
94
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
95 96 97 98
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
99
            trainers=trainers,
T
tangwei12 已提交
100
            sync_mode=sync_mode,
101
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
102 103
        return t

W
Wu Yi 已提交
104
    def run_pserver(self, args):
W
Wu Yi 已提交
105
        self.lr = args.lr
106
        self.get_model(batch_size=args.batch_size)
107
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
117 118 119
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
120

T
typhoonzero 已提交
121 122 123
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
124
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
125
        exe.run(pserver_prog)
126
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

259 260
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
261 262 263 264 265 266 267 268

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
269
        dist_strategy.fuse_memory_size = 1  # MB
270
        dist_strategy.fuse_laryer_size = 1
271 272 273 274
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
275 276
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
277 278 279

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
280
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
281 282
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
283 284

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
285
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
286 287 288 289

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

290 291 292 293 294 295 296 297 298 299
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
300 301 302 303 304 305 306 307 308 309

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

310 311 312 313 314 315 316
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

317 318 319 320 321 322 323 324 325 326 327 328 329 330
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

331
        print_to_err(type(self).__name__, "begin to train on trainer")
332 333 334 335 336 337
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
338 339
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
340 341 342 343 344 345

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

376
    def run_trainer(self, args):
W
Wu Yi 已提交
377
        self.lr = args.lr
W
Wu Yi 已提交
378 379 380
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
381 382 383
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
384 385 386
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
387

W
Wu Yi 已提交
388
        if args.update_method == "pserver":
389
            print_to_err(
390 391
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
392 393 394 395 396 397 398 399 400
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
401
            trainer_prog = t.get_trainer_program()
402
            print_to_err(
403 404
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
405
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
406 407 408
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
409
            config.nccl_comm_num = args.nccl_comm_num
410 411 412
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
413
            print_to_err(
414 415
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
416 417 418 419 420 421 422
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
423
            print_to_err(
424 425
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
426
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
427
        else:
428
            print_to_err(
429 430
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
431
            trainer_prog = fluid.default_main_program()
432
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
433

434 435 436
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

437
        if args.use_cuda:
438 439
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
440 441 442
        else:
            place = fluid.CPUPlace()

443 444
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
445
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
446

W
Wu Yi 已提交
447 448
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
449

W
Wu Yi 已提交
450
        build_stra = fluid.BuildStrategy()
451 452 453
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
454

455 456 457 458
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
459 460 461
        if args.hogwild:
            build_stra.async_mode = True

462 463 464
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
465 466 467 468 469
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
470
        pass_builder = None
X
Xin Pan 已提交
471
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
472
            pass_builder = build_stra._finalize_strategy_and_create_passes()
473
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
474
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
475

W
Wu Yi 已提交
476
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
477 478
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
479
        else:
W
Wu Yi 已提交
480
            # case args.update_method == "nccl2_reduce_layer":
481 482
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
483

484
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
485
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
486
            loss_name=avg_cost.name,
W
Wu Yi 已提交
487
            build_strategy=build_stra,
W
Wu Yi 已提交
488
            exec_strategy=exec_strategy)
489
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
490 491 492 493 494 495 496

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
497
        reader_generator = train_reader()
T
typhoonzero 已提交
498

499 500
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
501
            if args.update_method != "local" and args.use_reader_alloc:
502 503 504 505 506 507 508
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
509

510
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
511
        out_losses = []
512
        for i in six.moves.xrange(RUN_STEP):
513 514
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
515
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
516
            out_losses.append(loss[0])
517 518
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
519

520
        print_to_out(out_losses)
T
typhoonzero 已提交
521 522


523 524 525 526 527 528 529 530 531
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

532 533 534 535 536 537 538 539 540 541
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

542
    def run_trainer(self, args):
Y
Yan Xu 已提交
543

544
        seed = 90
545 546 547 548 549 550 551 552
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
553 554 555 556

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
557 558
            np.random.seed(seed)
            import random
559
            random.seed(seed)
560 561
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
562

563 564
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
565 566 567 568 569
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
570
                print_to_err(
571 572
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
573
                dygraph.parallel.prepare_context(strategy)
574 575 576 577 578 579
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
580
                print_to_err(type(self).__name__, "model built in dygraph")
581
            out_losses = []
582
            print_to_err(type(self).__name__, "begin to run dygraph training")
583
            for step_id, data in enumerate(train_reader()):
584
                data = self._get_data(data, args)
585 586 587
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
588
                if step_id % 10 == 0:
589
                    print_to_err(
590
                        type(self).__name__,
591
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
592
                out_losses.append(loss.numpy())
593 594 595 596

                loss.backward()

                opt.minimize(loss)
597 598
                if not args.accumulate_gradient:
                    model.clear_gradients()
599
        print_to_out(out_losses)
600

601 602 603 604 605 606 607 608 609
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
610
        random.seed(seed)
611 612 613 614 615 616 617 618 619 620
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
621 622 623 624
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

640
    def run_use_fleet_api_trainer(self, args):
641 642 643 644 645 646 647 648 649 650
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
651
        random.seed(seed)
652 653 654
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

655 656
        # set strategy
        strategy = fleet.DistributedStrategy()
657 658
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
659

660
        # 3. init parallel env
661
        if args.update_method == "nccl2" or "bkcl":
662
            fleet.init(is_collective=True, strategy=strategy)
663 664 665

        # 4. train model
        model, train_reader, opt = self.get_model()
666
        if args.update_method == "nccl2" or "bkcl":
667 668 669 670 671 672 673 674 675 676 677 678 679 680
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
681 682
            if not args.accumulate_gradient:
                opt.clear_grad()
683 684
        print_to_out(out_losses)

685

T
typhoonzero 已提交
686
def runtime_main(test_class):
W
Wu Yi 已提交
687 688 689 690
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
691 692 693 694
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
695
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
696 697
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
698
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
699 700
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
701
    parser.add_argument('--use_pipeline', action='store_true')
702
    parser.add_argument('--use_fleet_api', action='store_true')
703
    parser.add_argument('--use_fleet_api_20', action='store_true')
704 705
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
706
    parser.add_argument(
707
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
708 709 710
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
711
    parser.add_argument('--use_cuda', action='store_true')
712
    parser.add_argument('--use_xpu', action='store_true')
713
    parser.add_argument('--use_dgc', action='store_true')
714
    parser.add_argument('--accumulate_gradient', action='store_true')
715
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
716
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
717
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
718
    parser.add_argument('--hogwild', action='store_true')
719
    parser.add_argument('--save_model', action='store_true')
720
    parser.add_argument(
W
Wu Yi 已提交
721
        '--use_reader_alloc', action='store_true', required=False)
722
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
723
    parser.add_argument('--lr', required=False, type=float, default=0.001)
724 725
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
726 727 728 729 730
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
731
    parser.add_argument('--sync_batch_norm', action='store_true')
732 733 734 735 736
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
737 738

    args = parser.parse_args()
T
typhoonzero 已提交
739 740

    model = test_class()
W
Wu Yi 已提交
741
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
742
        model.run_pserver(args)
743 744
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
745 746
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
747 748
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
749
    else:
750
        model.run_trainer(args)
X
Xin Pan 已提交
751

M
minqiyang 已提交
752

M
minqiyang 已提交
753
import paddle.compat as cpt
Y
Yancey1989 已提交
754 755
import socket
from contextlib import closing
M
minqiyang 已提交
756

X
Xin Pan 已提交
757 758

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
759 760 761
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

762 763 764
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
765
            self.__use_xpu = False
766
            self._use_dgc = False
767 768
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
769 770 771 772 773
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
774 775 776 777 778
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
779 780 781 782
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
783

X
Xin Pan 已提交
784 785 786
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
787
        self._port_set = set()
M
minqiyang 已提交
788
        self._python_interp = sys.executable
W
Wu Yi 已提交
789
        self._sync_mode = True
T
tangwei12 已提交
790
        self._hogwild_mode = False
791
        self._enforce_place = None
W
Wu Yi 已提交
792
        self._use_reduce = False
W
Wu Yi 已提交
793
        self._dc_asgd = False  # must use with async mode
794
        self._use_reader_alloc = True
W
Wu Yi 已提交
795
        self._nccl2_mode = False
796
        self._bkcl_mode = False
797
        self._pipeline_mode = False
798
        self._mp_mode = False
W
Wu Yi 已提交
799 800 801 802 803
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
804
        self._lr = 0.001
805
        self._use_dgc = False
806
        self._dygraph = False
807
        self._nccl_comm_num = 1
808
        self._enable_backward_deps = False
809
        self._use_fleet_api = False
810
        self._use_fleet_api_20 = False
811 812
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
813
        self._use_hallreduce = False
814
        self._save_model = False
815
        self._fuse_all_reduce = None
816
        self._accumulate_gradient = False
817
        self._find_unused_parameters = False
W
Wu Yi 已提交
818
        self._setup_config()
819 820 821 822 823 824 825 826 827 828 829 830 831 832

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

833
        self._after_setup_config()
X
Xin Pan 已提交
834

Y
Yancey1989 已提交
835
    def _find_free_port(self):
Y
Yancey1989 已提交
836 837 838 839
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
840
                print_to_err(
841
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
842 843 844 845 846 847 848
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
849

850 851 852 853 854
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
855
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
856 857 858 859 860 861 862 863
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
864
        ps0_cmd = ps_cmd % \
865 866
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
867
        ps1_cmd = ps_cmd % \
868 869
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
870 871 872 873

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
874

875 876
        print(ps0_cmd)
        print(ps1_cmd)
877 878
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
879

880
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
881
        ps0_proc = subprocess.Popen(
882 883 884 885
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
886
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
887
        ps1_proc = subprocess.Popen(
888 889 890 891
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
892

893
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
894

895 896 897 898 899
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
900
                   batch_merge_repeat=1,
901
                   log_name="",
902
                   devices="0"):
G
gongweibao 已提交
903

904 905 906 907 908 909
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

910 911
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
912

913 914 915 916
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
917 918
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
919

920
        if self.__use_cuda:
921
            cmd += " --use_cuda"
W
Wu Yi 已提交
922
            env_local = {
923 924 925 926 927 928 929 930
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
931 932 933
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
934 935 936
        else:
            env_local = {'CPU_NUM': '1'}

937
        # not use dgc in single card
938
        if len(devices) > 1 and self._use_dgc:
939 940
            cmd += " --use_dgc"

941 942 943
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

944 945 946
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
947 948
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
949

950
        if check_error_log:
951
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
952
            local_proc = subprocess.Popen(
953
                cmd.split(" "),
G
gongweibao 已提交
954
                stdout=subprocess.PIPE,
955
                stderr=err_log,
W
Wu Yi 已提交
956
                env=env_local)
G
gongweibao 已提交
957 958
        else:
            local_proc = subprocess.Popen(
959
                cmd.split(" "),
G
gongweibao 已提交
960
                stdout=subprocess.PIPE,
961
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
962
                env=env_local)
G
gongweibao 已提交
963

964 965 966 967 968 969
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
970
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
971

W
Wu Yi 已提交
972
        return pickle.loads(local_out)
973

974
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
975
        # Run dist train to compare with local results
976 977
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
978

X
Xin Pan 已提交
979
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
980

981 982 983 984 985 986 987 988
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
989
        tr0_cmd = tr_cmd % \
990
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
991
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
992
        tr1_cmd = tr_cmd % \
993
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
994
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
995 996 997 998

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
999 1000 1001
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1002 1003 1004
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1005 1006 1007
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1008
        if self.__use_cuda:
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1019

W
Wu Yi 已提交
1020 1021
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1022 1023
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1024

1025
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1026
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1027
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1028
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1029
            stderr=tr0_pipe,
X
Xin Pan 已提交
1030
            env=env0)
1031
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1032
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1033
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1034
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1035
            stderr=tr1_pipe,
X
Xin Pan 已提交
1036 1037
            env=env1)

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1050 1051
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1052

G
gongweibao 已提交
1053
        # close trainer file
1054 1055 1056 1057
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1058

W
Wu Yi 已提交
1059 1060
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1061

W
Wu Yi 已提交
1062 1063
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1064 1065 1066
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1067 1068 1069 1070 1071 1072 1073
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1074
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1075 1076
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1077 1078

        if self._use_reduce:
1079
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1080
        if self._use_reader_alloc:
1081
            tr_cmd += " --use_reader_alloc"
1082 1083
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1084
        if self.__use_cuda:
1085 1086
            tr_cmd += " --use_cuda"
            env.update({
1087
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1088
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1089
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1090 1091 1092
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1093
            })
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1107
        else:
1108
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1109

1110
        if self._use_dgc:
1111 1112
            tr_cmd += " --use_dgc"

1113 1114 1115
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1116 1117 1118
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1119 1120
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1121
        if self._mp_mode:
W
WangXi 已提交
1122
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1123 1124

        if self._nccl_comm_num > 1:
1125
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1126

1127 1128
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1129

1130
        if self._enable_backward_deps:
1131
            tr_cmd += " --enable_backward_deps"
1132

1133 1134 1135
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1136
        if self._use_fleet_api:
1137
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1138 1139 1140 1141
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1142 1143
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1144

1145 1146 1147
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1148
        return tr_cmd, env
W
Wu Yi 已提交
1149

1150 1151
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1152 1153
        if self._use_hallreduce:
            self._ps_endpoints = ""
1154 1155 1156

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1157
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1158 1159 1160 1161 1162 1163 1164
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1165
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1166

1167 1168
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1169

1170
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1171

1172 1173 1174 1175 1176 1177 1178 1179
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1180

1181
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1182

1183
            print_to_err(
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1202 1203 1204
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1205

1206
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1253
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1254 1255 1256 1257 1258 1259
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1260
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1261
            "FLAGS_rpc_retry_bind_port": "50",
1262
            "FLAGS_cudnn_deterministic": "1",
1263
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1264
            "http_proxy": "",
1265 1266
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1267 1268 1269
        }

        if check_error_log:
1270
            required_envs["GLOG_vmodule"] = \
1271 1272
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1273 1274
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1275 1276
            required_envs["GLOG_logtostderr"] = "1"

1277 1278 1279 1280 1281 1282 1283 1284 1285
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1286

1287 1288
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1289
        local_losses \
1290
            = self._run_local(model_file, required_envs,
1291 1292
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1293
        if self._nccl2_mode:
W
Wu Yi 已提交
1294 1295
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1296 1297
                    model_file,
                    required_envs,
1298 1299
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1300
                    log_name=log_name)
W
Wu Yi 已提交
1301 1302
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1303 1304
                    model_file,
                    required_envs,
1305 1306
                    update_method='nccl2',
                    check_error_log=check_error_log,
1307
                    log_name=log_name)
1308 1309 1310 1311 1312 1313 1314 1315
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1316 1317 1318
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1319 1320
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1321
                model_file, required_envs, check_error_log, log_name=log_name)
1322 1323

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1324 1325 1326
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1327 1328 1329 1330
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1331 1332
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1333 1334 1335 1336 1337 1338 1339

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1352
                devices="0,1")
1353 1354 1355 1356 1357 1358 1359

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1360
                devices="0,1")
1361 1362 1363 1364 1365 1366 1367 1368

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)