Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0b07eef1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b07eef1
编写于
4月 25, 2019
作者:
Y
Yan Xu
提交者:
GitHub
4月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ParallelDyGraph with GPU collective mode (#16827)
implement dygraph.parallel.DataParallel to hook reduce op.
上级
1a4a51db
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
436 addition
and
97 deletion
+436
-97
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+6
-2
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+1
-1
paddle/fluid/operators/distributed_ops/allreduce_op.cc
paddle/fluid/operators/distributed_ops/allreduce_op.cc
+24
-87
paddle/fluid/operators/distributed_ops/allreduce_op.cu.cc
paddle/fluid/operators/distributed_ops/allreduce_op.cu.cc
+25
-0
paddle/fluid/operators/distributed_ops/allreduce_op.h
paddle/fluid/operators/distributed_ops/allreduce_op.h
+87
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+5
-3
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+46
-1
python/paddle/fluid/layers/collective.py
python/paddle/fluid/layers/collective.py
+3
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py
...on/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py
+136
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+70
-1
python/paddle/fluid/tests/unittests/test_parallel_dygraph_mnist.py
...ddle/fluid/tests/unittests/test_parallel_dygraph_mnist.py
+32
-0
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
0b07eef1
...
...
@@ -336,11 +336,15 @@ void OpBase::InvokeBackwardHooks() {
}
}
void
OpBase
::
RegisterBackwardHooks
(
const
py
::
object
&
callable
)
{
void
OpBase
::
RegisterBackwardHooks
(
const
py
::
object
&
callable
,
bool
front
)
{
VLOG
(
3
)
<<
"Register backward hooks "
<<
trace_id_
;
// TODO(minqiyang): check the callable format
backward_hooks_
.
push_back
(
callable
);
if
(
front
)
{
backward_hooks_
.
insert
(
backward_hooks_
.
begin
(),
callable
);
}
else
{
backward_hooks_
.
push_back
(
callable
);
}
}
void
VarBase
::
RunBackward
()
{
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
0b07eef1
...
...
@@ -310,7 +310,7 @@ class PYBIND11_HIDDEN OpBase {
return
grad_op_descs_
[
index
]
->
Type
();
}
void
RegisterBackwardHooks
(
const
py
::
object
&
callable
);
void
RegisterBackwardHooks
(
const
py
::
object
&
callable
,
bool
front
=
false
);
void
InvokeBackwardHooks
();
...
...
paddle/fluid/operators/distributed_ops/allreduce_op.cc
浏览文件 @
0b07eef1
...
...
@@ -15,91 +15,22 @@ limitations under the License. */
#include <future> // NOLINT
#include <ostream>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/operators/distributed_ops/allreduce_op.h"
namespace
paddle
{
namespace
operators
{
struct
MutableDataFunctor
{
MutableDataFunctor
(
void
**
data
,
framework
::
LoDTensor
*
tensor
,
const
platform
::
Place
&
place
)
:
data_
(
data
),
tensor_
(
tensor
),
place_
(
place
)
{}
template
<
typename
T
>
void
apply
()
{
*
data_
=
tensor_
->
mutable_data
<
T
>
(
place_
);
}
class
AllReduceOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
**
data_
;
framework
::
LoDTensor
*
tensor_
;
platform
::
Place
place_
;
};
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
class
AllReduceOp
:
public
framework
::
OperatorBase
{
using
OperatorBase
::
OperatorBase
;
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
PADDLE_ENFORCE
(
is_gpu_place
(
place
),
"AllReduce op can run on gpu place only for now."
);
#ifdef PADDLE_WITH_CUDA
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
ctx
=
pool
.
Get
(
place
);
auto
in_names
=
Inputs
(
"X"
);
auto
out_names
=
Outputs
(
"Out"
);
PADDLE_ENFORCE_EQ
(
in_names
.
size
(),
1
,
"Only support one input"
);
PADDLE_ENFORCE_EQ
(
out_names
.
size
(),
1
,
"Only support one output"
);
auto
*
in
=
scope
.
FindVar
(
in_names
[
0
]);
auto
*
out
=
scope
.
FindVar
(
out_names
[
0
]);
PADDLE_ENFORCE
(
in
->
IsType
<
framework
::
LoDTensor
>
()
||
out
->
IsType
<
framework
::
LoDTensor
>
(),
"Only support allreduce LoDTensors"
);
int
dtype
=
-
1
;
auto
in_tensor
=
in
->
Get
<
framework
::
LoDTensor
>
();
dtype
=
platform
::
ToNCCLDataType
(
in_tensor
.
type
());
int64_t
numel
=
in_tensor
.
numel
();
auto
*
sendbuff
=
in_tensor
.
data
<
void
>
();
auto
*
out_tensor
=
out
->
GetMutable
<
framework
::
LoDTensor
>
();
out_tensor
->
Resize
(
in_tensor
.
dims
());
void
*
recvbuff
=
nullptr
;
framework
::
VisitDataType
(
in_tensor
.
type
(),
MutableDataFunctor
(
&
recvbuff
,
out_tensor
,
place
));
auto
cuda_ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
ctx
);
auto
*
comm
=
cuda_ctx
->
nccl_comm
();
// FIXME(typhoonzero): should use nccl stream here.
auto
stream
=
cuda_ctx
->
stream
();
int
reduce_type
=
Attr
<
int
>
(
"reduce_type"
);
ncclRedOp_t
red_type
=
ncclSum
;
switch
(
reduce_type
)
{
case
0
:
red_type
=
ncclSum
;
break
;
case
1
:
red_type
=
ncclProd
;
break
;
case
2
:
red_type
=
ncclMax
;
break
;
case
3
:
red_type
=
ncclMin
;
break
;
}
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
sendbuff
,
recvbuff
,
numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
red_type
,
comm
,
stream
));
#endif
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
...
...
@@ -110,6 +41,10 @@ class AllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor) the result of allreduced."
);
AddAttr
<
int
>
(
"reduce_type"
,
"(int) determin the reduce type."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"sync_mode"
,
"(bool) whether to synchronize the CUDA stream after nccl call."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
***AllReduce Operator***
...
...
@@ -128,16 +63,18 @@ If input and output are the same variable, in-place allreduce will be used.
}
};
class
AllReduceOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_WITHOUT_GRADIENT
(
allreduce
,
ops
::
AllReduceOp
,
ops
::
AllReduceOpMaker
);
REGISTER_OPERATOR
(
allreduce
,
ops
::
AllReduceOp
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
AllReduceOpMaker
,
ops
::
AllReduceOpShapeInference
);
REGISTER_OP_CPU_KERNEL
(
allreduce
,
ops
::
AllReduceOpKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
AllReduceOpKernel
<
plat
::
CPUDeviceContext
,
double
>
,
ops
::
AllReduceOpKernel
<
plat
::
CPUDeviceContext
,
int
>
,
ops
::
AllReduceOpKernel
<
plat
::
CPUDeviceContext
,
int64_t
>
,
ops
::
AllReduceOpKernel
<
plat
::
CPUDeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/distributed_ops/allreduce_op.cu.cc
0 → 100644
浏览文件 @
0b07eef1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/allreduce_op.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
allreduce
,
ops
::
AllReduceOpKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
AllReduceOpKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
AllReduceOpKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
AllReduceOpKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
,
ops
::
AllReduceOpKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/distributed_ops/allreduce_op.h
0 → 100644
浏览文件 @
0b07eef1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
AllReduceOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
ctx
.
GetPlace
();
PADDLE_ENFORCE
(
is_gpu_place
(
place
),
"AllReduce op can run on gpu place only for now."
);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
dtype
=
platform
::
ToNCCLDataType
(
in
->
type
());
int64_t
numel
=
in
->
numel
();
auto
*
sendbuff
=
in
->
data
<
void
>
();
out
->
Resize
(
in
->
dims
());
void
*
recvbuff
=
out
->
mutable_data
<
T
>
(
place
);
auto
*
comm
=
dev_ctx
.
nccl_comm
();
// FIXME(typhoonzero): should use nccl stream here.
auto
stream
=
dev_ctx
.
stream
();
PADDLE_ENFORCE_NOT_NULL
(
stream
,
"Should initialize NCCL firstly."
);
int
reduce_type
=
ctx
.
Attr
<
int
>
(
"reduce_type"
);
ncclRedOp_t
red_type
=
ncclSum
;
switch
(
reduce_type
)
{
case
0
:
red_type
=
ncclSum
;
break
;
case
1
:
red_type
=
ncclProd
;
break
;
case
2
:
red_type
=
ncclMax
;
break
;
case
3
:
red_type
=
ncclMin
;
break
;
}
VLOG
(
0
)
<<
"call allreduce with type: "
<<
reduce_type
;
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
sendbuff
,
recvbuff
,
numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
red_type
,
comm
,
stream
));
if
(
ctx
.
Attr
<
bool
>
(
"sync_mode"
))
{
VLOG
(
0
)
<<
"sync allreduce..."
;
cudaError_t
e_sync
=
cudaStreamSynchronize
(
stream
);
if
(
e_sync
!=
0
)
{
LOG
(
FATAL
)
<<
"cudaStreamSynchronize "
<<
cudaGetErrorString
(
e_sync
);
}
}
#else
PADDLE_THROW
(
"PaddlePaddle should compile with GPU."
);
#endif
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
0b07eef1
...
...
@@ -236,9 +236,11 @@ PYBIND11_MODULE(core, m) {
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<
const
std
::
string
&>
())
.
def
(
"register_backward_hooks"
,
[](
imperative
::
OpBase
&
self
,
const
py
::
object
&
callable
)
{
self
.
RegisterBackwardHooks
(
callable
);
})
[](
imperative
::
OpBase
&
self
,
const
py
::
object
&
callable
,
bool
front
=
false
)
{
self
.
RegisterBackwardHooks
(
callable
,
front
);
},
py
::
arg
(
"callable"
),
py
::
arg
(
"front"
)
=
false
)
.
def_property
(
"_trace_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
pybind11
::
gil_scoped_release
release
;
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
0b07eef1
...
...
@@ -12,7 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
six
from
..
import
core
from
.
import
layers
from
..
import
framework
from
..layers
import
collective
__all__
=
[
"prepare_context"
]
...
...
@@ -21,9 +27,13 @@ ParallelStrategy = core.ParallelStrategy
__parallel_ctx__clz__
=
None
def
prepare_context
(
parallel_strategy
,
place
):
def
prepare_context
(
parallel_strategy
):
global
__parallel_ctx__clz__
assert
__parallel_ctx__clz__
is
None
,
"ParallelContext can only be initialized once."
assert
framework
.
in_dygraph_mode
(
)
is
True
,
"dygraph.parallel.prepare_context should be used with dygrahp mode."
place
=
framework
.
_current_expected_place
()
assert
place
is
not
None
,
"dygraph.parallel.prepare_context should be used in fluid.dygraph.guard(place) guard."
if
isinstance
(
place
,
core
.
CUDAPlace
):
__parallel_ctx__clz__
=
core
.
NCCLParallelContext
(
parallel_strategy
,
...
...
@@ -58,3 +68,38 @@ class Env(object):
@
property
def
current_endpoint
(
self
):
return
self
.
_current_endpoint
@
property
def
trainer_endpoints
(
self
):
return
self
.
_trainer_endpoints
class
DataParallel
(
layers
.
Layer
):
def
__init__
(
self
,
layers
):
super
(
DataParallel
,
self
).
__init__
(
layers
.
full_name
()
+
"_data_parallel"
)
self
.
_layers
=
layers
def
build_once
(
self
,
*
inputs
,
**
kwargs
):
#TODO(Yancey1989): broadcast all the paramters
pass
def
forward
(
self
,
*
inputs
,
**
kwargs
):
def
_collective_hook
(
iop
):
op
=
framework
.
_dygraph_tracer
().
_ops
[
iop
.
_trace_id
]
for
k
,
v
in
six
.
iteritems
(
op
.
inputs
):
for
ivar
in
v
:
g
=
ivar
.
_grad_ivar
()
if
g
:
g_var
=
framework
.
Variable
(
block
=
self
.
_helper
.
main_program
.
current_block
(),
name
=
ivar
.
_grad_name
(),
stop_gradient
=
True
,
ivar
=
g
)
collective
.
_allreduce
(
g_var
,
g_var
,
sync_mode
=
True
)
outs
=
self
.
_layers
(
*
inputs
,
**
kwargs
)
for
_
,
op
in
six
.
iteritems
(
framework
.
_dygraph_tracer
().
_ops
):
# hook collective ops
op
.
iop
.
register_backward_hooks
(
_collective_hook
,
front
=
True
)
return
outs
python/paddle/fluid/layers/collective.py
浏览文件 @
0b07eef1
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
from
..layer_helper
import
LayerHelper
,
unique_name
def
_allreduce
(
x
,
out
=
None
,
reduce_type
=
"sum"
):
def
_allreduce
(
x
,
out
=
None
,
reduce_type
=
"sum"
,
sync_mode
=
False
):
helper
=
LayerHelper
(
"allreduce"
,
**
locals
())
# Convert string reduce type to op int type
red_typ_int
=
0
...
...
@@ -43,5 +43,6 @@ def _allreduce(x, out=None, reduce_type="sum"):
type
=
'allreduce'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
"reduce_type"
:
red_typ_int
})
attrs
=
{
"reduce_type"
:
red_typ_int
,
"sync_mode"
:
sync_mode
})
return
out
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
0b07eef1
...
...
@@ -19,6 +19,7 @@ endif(NOT WITH_DISTRIBUTE)
if
(
NOT
${
WITH_GPU
}
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_mnist
)
# TODO(Yancey1989): parallel dygraph support CPU device in future
elseif
(
${
CUDNN_VERSION
}
VERSION_LESS 7100
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
endif
()
...
...
python/paddle/fluid/tests/unittests/parallel_dygraph_mnist.py
0 → 100644
浏览文件 @
0b07eef1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
pickle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.dygraph
as
dygraph
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.dygraph.base
import
to_variable
from
test_dist_base
import
runtime_main
,
TestParallelDyGraphRunnerBase
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
1
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
(
name_scope
)
self
.
_conv2d
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
self
.
full_name
(),
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
MNIST
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MNIST
,
self
).
__init__
(
name_scope
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
full_name
(),
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
full_name
(),
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
self
.
full_name
(),
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
self
.
_fc
(
x
)
return
x
class
TestMnist
(
TestParallelDyGraphRunnerBase
):
def
get_model
(
self
):
model
=
MNIST
(
"mnist"
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
2
,
drop_last
=
True
)
opt
=
SGDOptimizer
(
learning_rate
=
1e-3
)
return
model
,
train_reader
,
opt
def
run_one_loop
(
self
,
model
,
opt
,
data
):
batch_size
=
len
(
data
)
dy_x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
cost
=
model
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
if
__name__
==
"__main__"
:
runtime_main
(
TestMnist
)
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
0b07eef1
...
...
@@ -27,6 +27,9 @@ import numpy as np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
import
paddle.fluid.dygraph
as
dygraph
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.parallel
import
DataParallel
RUN_STEP
=
10
DEFAULT_BATCH_SIZE
=
2
...
...
@@ -187,6 +190,68 @@ class TestDistRunnerBase(object):
sys
.
stdout
.
buffer
.
write
(
pickle
.
dumps
(
out_losses
))
class
TestParallelDyGraphRunnerBase
(
object
):
def
get_model
(
self
):
raise
NotImplementedError
(
"get_model should be implemented by child classes."
)
def
run_one_loop
(
self
,
model
,
opt
,
data
):
raise
NotImplementedError
(
"train_one_loop should be implemented by the child classes."
)
def
run_trainer
(
self
,
args
):
seed
=
90
device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
place
=
fluid
.
CUDAPlace
(
device_id
)
def
_get_data
(
batch
):
if
args
.
update_method
!=
"local"
:
new_batch
=
[]
for
offset
,
item
in
enumerate
(
batch
):
if
offset
%
2
==
args
.
trainer_id
:
new_batch
.
append
(
item
)
return
new_batch
else
:
return
batch
with
fluid
.
dygraph
.
guard
(
place
):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
model
,
train_reader
,
opt
=
self
.
get_model
()
nranks
=
len
(
args
.
endpoints
.
split
(
","
))
if
args
.
endpoints
else
1
if
args
.
update_method
==
"nccl2"
:
sys
.
stderr
.
write
(
""
)
model
=
dygraph
.
parallel
.
DataParallel
(
model
)
strategy
=
dygraph
.
parallel
.
ParallelStrategy
()
strategy
.
nranks
=
nranks
strategy
.
local_rank
=
args
.
trainer_id
strategy
.
trainer_endpoints
=
args
.
endpoints
.
split
(
","
)
strategy
.
current_endpoint
=
args
.
current_endpoint
dygraph
.
parallel
.
prepare_context
(
strategy
)
out_losses
=
[]
for
step_id
,
data
in
enumerate
(
train_reader
()):
data
=
_get_data
(
data
)
if
step_id
==
RUN_STEP
:
break
loss
=
self
.
run_one_loop
(
model
,
opt
,
data
)
# FIXME(Yancey1989): scale the loss inplace
loss
.
stop_gradient
=
True
loss_scale
=
to_variable
(
np
.
array
([
nranks
]).
astype
(
"float32"
))
loss
=
loss
/
loss_scale
out_losses
.
append
(
loss
.
numpy
())
loss
.
backward
()
opt
.
minimize
(
loss
)
model
.
clear_gradients
()
if
six
.
PY2
:
print
(
pickle
.
dumps
(
out_losses
))
else
:
sys
.
stdout
.
buffer
.
write
(
pickle
.
dumps
(
out_losses
))
def
runtime_main
(
test_class
):
parser
=
argparse
.
ArgumentParser
(
description
=
'Run dist test.'
)
parser
.
add_argument
(
...
...
@@ -275,6 +340,7 @@ class TestDistBase(unittest.TestCase):
self
.
_nccl2_reduce_layer
=
False
self
.
_lr
=
0.001
self
.
_use_dgc
=
False
self
.
_dygraph
=
False
self
.
_setup_config
()
self
.
_after_setup_config
()
...
...
@@ -597,6 +663,9 @@ class TestDistBase(unittest.TestCase):
local_loss
=
local_losses
[
step_id
]
tr0_loss
=
tr0_losses
[
step_id
]
tr1_loss
=
tr1_losses
[
step_id
]
dist_loss
=
(
np
.
array
([
tr0_loss
])
+
np
.
array
([
tr1_loss
]))
/
2
dist_loss
=
(
np
.
array
([
tr0_loss
])
+
np
.
array
([
tr1_loss
]))
if
not
self
.
_dygraph
:
# Parallel DyGraph already scaled the loss in training
dist_loss
=
dist_loss
/
2
print
(
"======="
,
local_loss
,
":"
,
dist_loss
[
0
],
"======="
)
self
.
assertAlmostEqual
(
local_loss
,
dist_loss
[
0
],
delta
=
delta
)
python/paddle/fluid/tests/unittests/test_parallel_dygraph_mnist.py
0 → 100644
浏览文件 @
0b07eef1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_dist_base
import
TestDistBase
class
TestParallelDygraphMnist
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_nccl2_mode
=
True
self
.
_dygraph
=
True
def
test_mnist
(
self
):
self
.
check_with_place
(
"parallel_dygraph_mnist.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录