“03789a7df4beb929aa67ea9892c214d68fd6e7d8”上不存在“paddle/fluid/operators/batch_norm_op.cu”
test_dist_base.py 8.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time

import unittest
import os
import sys
M
minqiyang 已提交
19
import six
X
Xin Pan 已提交
20 21
import signal
import subprocess
T
typhoonzero 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
import six


class TestDistRunnerBase(object):
    def get_model(self, batch_size=2):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def get_transpiler(self, trainer_id, main_program, pserver_endpoints,
                       trainers):
        # NOTE: import fluid until runtime, or else forking processes will cause error.
        import paddle
        import paddle.fluid as fluid
        t = fluid.DistributeTranspiler()
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
            trainers=trainers)
        return t

    def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
                    trainer_id):
        import paddle
        import paddle.fluid as fluid
        self.get_model(batch_size=2)
        t = self.get_transpiler(trainer_id,
                                fluid.default_main_program(), pserver_endpoints,
                                trainers)
        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

    def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
        import paddle
        import paddle.fluid as fluid
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
        self.get_model(batch_size=2)
        if is_dist:
            t = self.get_transpiler(trainer_id,
                                    fluid.default_main_program(), endpoints,
                                    trainers)
            trainer_prog = t.get_trainer_program()
        else:
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
        startup_exe.run(fluid.default_startup_program())

        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(
            True, loss_name=avg_cost.name, exec_strategy=strategy)

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = test_reader()

        data = next(reader_generator)
        first_loss, = exe.run(fetch_list=[avg_cost.name],
                              feed=feeder.feed(data))
        print(first_loss)

        for i in six.moves.xrange(5):
            data = next(reader_generator)
            loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))

        data = next(reader_generator)
        last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
        print(last_loss)


def runtime_main(test_class):
    import paddle
    import paddle.fluid as fluid
    import paddle.fluid.core as core

    if len(sys.argv) != 7:
        print(
            "Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
        )
    role = sys.argv[1]
    endpoints = sys.argv[2]
    trainer_id = int(sys.argv[3])
    current_endpoint = sys.argv[4]
    trainers = int(sys.argv[5])
    is_dist = True if sys.argv[6] == "TRUE" else False

    model = test_class()
    if role == "pserver":
        model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
    else:
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
X
Xin Pan 已提交
125

M
minqiyang 已提交
126

M
minqiyang 已提交
127 128
import paddle.fluid.compat as cpt

X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

class TestDistBase(unittest.TestCase):
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
        self._ps_endpoints = "127.0.0.1:9123,127.0.0.1:9124"
        self._python_interp = "python"

    def start_pserver(self, model_file):
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
        ps0_cmd = "%s %s pserver %s 0 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
             self._trainers)
        ps1_cmd = "%s %s pserver %s 0 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
             self._trainers)

        ps0_proc = subprocess.Popen(
            ps0_cmd.split(" "), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        ps1_proc = subprocess.Popen(
            ps1_cmd.split(" "), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        return ps0_proc, ps1_proc

    def _wait_ps_ready(self, pid):
X
polish  
Xin Pan 已提交
153
        retry_times = 50
X
Xin Pan 已提交
154 155 156 157 158 159 160 161
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(3)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
X
polish  
Xin Pan 已提交
162 163 164
            except os.error as e:
                sys.stderr.write('waiting for pserver: %s, left retry %d\n' %
                                 (e, retry_times))
X
Xin Pan 已提交
165 166 167 168 169 170 171 172
                retry_times -= 1

    def check_with_place(self, model_file, delta=1e-3):
        # *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
        required_envs = {
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH"),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
W
Wu Yi 已提交
173 174
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_cudnn_deterministic": "1"
X
Xin Pan 已提交
175 176
        }
        # Run local to get a base line
X
clean  
Xin Pan 已提交
177
        env_local = {"CUDA_VISIBLE_DEVICES": "0"}
X
Xin Pan 已提交
178 179 180 181 182 183 184 185 186 187 188
        env_local.update(required_envs)
        local_cmd = "%s %s trainer %s 0 %s %d FLASE" % \
            (self._python_interp, model_file,
             "127.0.0.1:1234", "127.0.0.1:1234", 1)
        local_proc = subprocess.Popen(
            local_cmd.split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env_local)
        local_proc.wait()
        out, err = local_proc.communicate()
M
minqiyang 已提交
189
        local_ret = cpt.to_text(out)
X
Xin Pan 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        sys.stderr.write('local_loss: %s\n' % local_ret)
        sys.stderr.write('local_stderr: %s\n' % err)

        # Run dist train to compare with local results
        ps0, ps1 = self.start_pserver(model_file)
        self._wait_ps_ready(ps0.pid)
        self._wait_ps_ready(ps1.pid)

        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
        tr0_cmd = "%s %s trainer %s 0 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
             self._trainers)
        tr1_cmd = "%s %s trainer %s 1 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
             self._trainers)

X
clean  
Xin Pan 已提交
206 207
        env0 = {"CUDA_VISIBLE_DEVICES": "0"}
        env1 = {"CUDA_VISIBLE_DEVICES": "1"}
X
Xin Pan 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        env0.update(required_envs)
        env1.update(required_envs)
        FNULL = open(os.devnull, 'w')

        tr0_proc = subprocess.Popen(
            tr0_cmd.split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env0)
        tr1_proc = subprocess.Popen(
            tr1_cmd.split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env1)

        tr0_proc.wait()
        tr1_proc.wait()
        out, err = tr0_proc.communicate()
        sys.stderr.write('dist_stderr: %s\n' % err)
M
minqiyang 已提交
227
        loss_data0 = cpt.to_text(out)
X
Xin Pan 已提交
228 229 230 231 232 233 234 235 236
        sys.stderr.write('dist_loss: %s\n' % loss_data0)
        lines = loss_data0.split("\n")
        dist_first_loss = eval(lines[0].replace(" ", ","))[0]
        dist_last_loss = eval(lines[1].replace(" ", ","))[0]

        local_lines = local_ret.split("\n")
        local_first_loss = eval(local_lines[0])[0]
        local_last_loss = eval(local_lines[1])[0]

T
typhoonzero 已提交
237
        # FIXME: use terminate() instead of sigkill.
X
Xin Pan 已提交
238 239 240
        os.kill(ps0.pid, signal.SIGKILL)
        os.kill(ps1.pid, signal.SIGKILL)
        FNULL.close()
T
typhoonzero 已提交
241 242 243

        self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
        self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)