test_dist_base.py 51.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46
def print_to_out(out_losses):
T
tianshuo78520a 已提交
47
    sys.stdout.buffer.write(pickle.dumps(out_losses))
48 49 50


def print_to_err(class_name, log_str):
51 52
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
53
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54 55


56 57 58 59
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
60
class TestDistRunnerBase(object):
W
Wu Yi 已提交
61 62 63
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
64
                  single_device=False,
J
Jiangxinz 已提交
65 66
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

W
Wu Yi 已提交
99
    def run_pserver(self, args):
W
Wu Yi 已提交
100
        self.lr = args.lr
101
        self.get_model(batch_size=args.batch_size)
102
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
103 104 105 106 107 108 109 110 111

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
112 113 114
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
115

T
typhoonzero 已提交
116 117 118
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
119
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
120
        exe.run(pserver_prog)
121
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
149
        sys.stdout.buffer.write(pickle.dumps(out_losses))
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
246
        sys.stdout.buffer.write(pickle.dumps(out_losses))
247

248 249
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
250 251 252 253 254 255 256 257

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
258
        dist_strategy.fuse_memory_size = 1  # MB
259
        dist_strategy.fuse_laryer_size = 1
260 261 262 263
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
264 265
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
266 267 268

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
269
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
270 271
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
272 273

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
274
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
275 276 277 278

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

279 280 281 282 283 284 285 286 287 288
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
289 290 291 292 293 294 295 296 297 298

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

299 300 301 302 303 304 305
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

306 307 308 309 310 311 312 313 314 315 316 317 318 319
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

320
        print_to_err(type(self).__name__, "begin to train on trainer")
321 322 323 324 325 326
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
327 328
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
329

T
tianshuo78520a 已提交
330
        sys.stdout.buffer.write(pickle.dumps(out_losses))
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

362
    def run_trainer(self, args):
W
Wu Yi 已提交
363
        self.lr = args.lr
W
Wu Yi 已提交
364 365 366
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
367 368 369
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
370 371 372
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
373

W
Wu Yi 已提交
374
        if args.update_method == "pserver":
375
            print_to_err(
376 377
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
378 379 380 381 382 383 384 385 386
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
387
            trainer_prog = t.get_trainer_program()
388
            print_to_err(
389 390
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
391
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
392 393 394
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
395
            config.nccl_comm_num = args.nccl_comm_num
396 397 398
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
399
            print_to_err(
400 401
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
402 403 404 405 406 407 408
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
409
            print_to_err(
410 411
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
412
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
413
        else:
414
            print_to_err(
415 416
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
417
            trainer_prog = fluid.default_main_program()
418
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
419

420 421 422
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

423
        if args.use_cuda:
424 425
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
426 427 428
        else:
            place = fluid.CPUPlace()

429 430
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
431
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
432

W
Wu Yi 已提交
433 434
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
435

W
Wu Yi 已提交
436
        build_stra = fluid.BuildStrategy()
437 438 439
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
440

441 442 443 444
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
445 446 447
        if args.hogwild:
            build_stra.async_mode = True

448 449 450
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
451 452 453 454 455
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
456
        pass_builder = None
X
Xin Pan 已提交
457
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
458
            pass_builder = build_stra._finalize_strategy_and_create_passes()
459
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
460
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
461

W
Wu Yi 已提交
462
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
463 464
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
465
        else:
W
Wu Yi 已提交
466
            # case args.update_method == "nccl2_reduce_layer":
467 468
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
469

470
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
471
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
472
            loss_name=avg_cost.name,
W
Wu Yi 已提交
473
            build_strategy=build_stra,
W
Wu Yi 已提交
474
            exec_strategy=exec_strategy)
475
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
476 477 478 479 480 481 482

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
483
        reader_generator = train_reader()
T
typhoonzero 已提交
484

485 486
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
487
            if args.update_method != "local" and args.use_reader_alloc:
488 489 490 491 492 493 494
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
495

496
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
497
        out_losses = []
498
        for i in six.moves.xrange(RUN_STEP):
499 500
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
501
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
502
            out_losses.append(loss[0])
503 504
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
505

506
        print_to_out(out_losses)
T
typhoonzero 已提交
507 508


509 510 511 512 513 514 515 516 517
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

518 519 520 521 522 523 524 525 526 527
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

528
    def run_trainer(self, args):
Y
Yan Xu 已提交
529

530
        seed = 90
531 532 533 534 535 536 537 538
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
539 540 541 542

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
543 544
            np.random.seed(seed)
            import random
545
            random.seed(seed)
546 547
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
548

549 550
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
551 552 553 554 555
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
556
                print_to_err(
557 558
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
559
                dygraph.parallel.prepare_context(strategy)
560 561 562 563 564 565
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
566
                print_to_err(type(self).__name__, "model built in dygraph")
567
            out_losses = []
568
            print_to_err(type(self).__name__, "begin to run dygraph training")
569
            for step_id, data in enumerate(train_reader()):
570
                data = self._get_data(data, args)
571 572 573
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
574
                if step_id % 10 == 0:
575
                    print_to_err(
576
                        type(self).__name__,
577
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
578
                out_losses.append(loss.numpy())
579 580 581 582

                loss.backward()

                opt.minimize(loss)
583 584
                if not args.accumulate_gradient:
                    model.clear_gradients()
585
        print_to_out(out_losses)
586

587 588 589 590 591 592 593 594 595
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
596
        random.seed(seed)
597 598 599 600 601 602 603 604 605 606
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
607 608 609 610
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

626
    def run_use_fleet_api_trainer(self, args):
627 628 629 630 631 632 633 634 635 636
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
637
        random.seed(seed)
638 639 640
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

641 642
        # set strategy
        strategy = fleet.DistributedStrategy()
643 644
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
645

646
        # 3. init parallel env
647
        if args.update_method == "nccl2" or "bkcl":
648
            fleet.init(is_collective=True, strategy=strategy)
649 650 651

        # 4. train model
        model, train_reader, opt = self.get_model()
652
        if args.update_method == "nccl2" or "bkcl":
653 654 655 656 657 658 659 660 661 662 663 664 665 666
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
667 668
            if not args.accumulate_gradient:
                opt.clear_grad()
669 670
        print_to_out(out_losses)

671

T
typhoonzero 已提交
672
def runtime_main(test_class):
W
Wu Yi 已提交
673 674 675 676
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
677 678 679 680
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
681
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
682 683
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
684
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
685 686
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
687
    parser.add_argument('--use_pipeline', action='store_true')
688
    parser.add_argument('--use_fleet_api', action='store_true')
689
    parser.add_argument('--use_fleet_api_20', action='store_true')
690 691
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
692
    parser.add_argument(
693
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
694 695 696
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
697
    parser.add_argument('--use_cuda', action='store_true')
698
    parser.add_argument('--use_xpu', action='store_true')
699
    parser.add_argument('--use_dgc', action='store_true')
700
    parser.add_argument('--accumulate_gradient', action='store_true')
701
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
702
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
703
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
704
    parser.add_argument('--hogwild', action='store_true')
705
    parser.add_argument('--save_model', action='store_true')
706
    parser.add_argument(
W
Wu Yi 已提交
707
        '--use_reader_alloc', action='store_true', required=False)
708
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
709
    parser.add_argument('--lr', required=False, type=float, default=0.001)
710 711
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
712 713 714 715 716
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
717
    parser.add_argument('--sync_batch_norm', action='store_true')
718 719 720 721 722
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
723 724

    args = parser.parse_args()
T
typhoonzero 已提交
725 726

    model = test_class()
W
Wu Yi 已提交
727
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
728
        model.run_pserver(args)
729 730
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
731 732
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
733 734
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
735
    else:
736
        model.run_trainer(args)
X
Xin Pan 已提交
737

M
minqiyang 已提交
738

M
minqiyang 已提交
739
import paddle.compat as cpt
Y
Yancey1989 已提交
740 741
import socket
from contextlib import closing
M
minqiyang 已提交
742

X
Xin Pan 已提交
743 744

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
745 746 747
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

748 749 750
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
751
            self.__use_xpu = False
752
            self._use_dgc = False
753 754
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
755 756 757 758 759
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
760 761 762 763 764
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
765 766 767 768
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
769

X
Xin Pan 已提交
770 771 772
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
773
        self._port_set = set()
M
minqiyang 已提交
774
        self._python_interp = sys.executable
W
Wu Yi 已提交
775
        self._sync_mode = True
T
tangwei12 已提交
776
        self._hogwild_mode = False
777
        self._enforce_place = None
W
Wu Yi 已提交
778
        self._use_reduce = False
W
Wu Yi 已提交
779
        self._dc_asgd = False  # must use with async mode
780
        self._use_reader_alloc = True
W
Wu Yi 已提交
781
        self._nccl2_mode = False
782
        self._bkcl_mode = False
783
        self._pipeline_mode = False
784
        self._mp_mode = False
W
Wu Yi 已提交
785 786 787 788 789
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
790
        self._lr = 0.001
791
        self._use_dgc = False
792
        self._dygraph = False
793
        self._nccl_comm_num = 1
794
        self._enable_backward_deps = False
795
        self._use_fleet_api = False
796
        self._use_fleet_api_20 = False
797 798
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
799
        self._use_hallreduce = False
800
        self._save_model = False
801
        self._fuse_all_reduce = None
802
        self._accumulate_gradient = False
803
        self._find_unused_parameters = False
W
Wu Yi 已提交
804
        self._setup_config()
805 806 807 808 809 810 811 812 813 814 815 816 817 818

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

819
        self._after_setup_config()
X
Xin Pan 已提交
820

Y
Yancey1989 已提交
821
    def _find_free_port(self):
Y
Yancey1989 已提交
822 823 824 825
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
826
                print_to_err(
827
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
828 829 830 831 832 833 834
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
835

836 837 838 839 840
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
841
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
842 843 844 845 846 847 848 849
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
850
        ps0_cmd = ps_cmd % \
851 852
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
853
        ps1_cmd = ps_cmd % \
854 855
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
856 857 858 859

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
860

861 862
        print(ps0_cmd)
        print(ps1_cmd)
863 864
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
865

866
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
867
        ps0_proc = subprocess.Popen(
868 869 870 871
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
872
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
873
        ps1_proc = subprocess.Popen(
874 875 876 877
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
878

879
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
880

881 882 883 884 885
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
886
                   batch_merge_repeat=1,
887
                   log_name="",
888
                   devices="0"):
G
gongweibao 已提交
889

890 891 892 893 894 895
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

896 897
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
898

899 900 901 902
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
903 904
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
905

906
        if self.__use_cuda:
907
            cmd += " --use_cuda"
W
Wu Yi 已提交
908
            env_local = {
909 910 911 912 913 914 915 916
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
917 918 919
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
920 921 922
        else:
            env_local = {'CPU_NUM': '1'}

923
        # not use dgc in single card
924
        if len(devices) > 1 and self._use_dgc:
925 926
            cmd += " --use_dgc"

927 928 929
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

930 931 932
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
933 934
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
935

936
        if check_error_log:
937
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
938
            local_proc = subprocess.Popen(
939
                cmd.split(" "),
G
gongweibao 已提交
940
                stdout=subprocess.PIPE,
941
                stderr=err_log,
W
Wu Yi 已提交
942
                env=env_local)
G
gongweibao 已提交
943 944
        else:
            local_proc = subprocess.Popen(
945
                cmd.split(" "),
G
gongweibao 已提交
946
                stdout=subprocess.PIPE,
947
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
948
                env=env_local)
G
gongweibao 已提交
949

950 951 952 953 954 955
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
956
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
957

W
Wu Yi 已提交
958
        return pickle.loads(local_out)
959

960
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
961
        # Run dist train to compare with local results
962 963
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
964

X
Xin Pan 已提交
965
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
966

967 968 969 970 971 972 973 974
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
975
        tr0_cmd = tr_cmd % \
976
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
977
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
978
        tr1_cmd = tr_cmd % \
979
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
980
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
981 982 983 984

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
985 986 987
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
988 989 990
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
991 992 993
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
994
        if self.__use_cuda:
995 996 997 998 999 1000 1001 1002 1003 1004
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1005

W
Wu Yi 已提交
1006 1007
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1008 1009
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1010

1011
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1012
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1013
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1014
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1015
            stderr=tr0_pipe,
X
Xin Pan 已提交
1016
            env=env0)
1017
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1018
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1019
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1020
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1021
            stderr=tr1_pipe,
X
Xin Pan 已提交
1022 1023
            env=env1)

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1036 1037
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1038

G
gongweibao 已提交
1039
        # close trainer file
1040 1041 1042 1043
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1044

W
Wu Yi 已提交
1045 1046
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1047

W
Wu Yi 已提交
1048 1049
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1050 1051 1052
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1053 1054 1055 1056 1057 1058 1059
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1060
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1061 1062
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1063 1064

        if self._use_reduce:
1065
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1066
        if self._use_reader_alloc:
1067
            tr_cmd += " --use_reader_alloc"
1068 1069
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1070
        if self.__use_cuda:
1071 1072
            tr_cmd += " --use_cuda"
            env.update({
1073
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1074
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1075
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1076 1077 1078
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1079
            })
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1093
        else:
1094
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1095

1096
        if self._use_dgc:
1097 1098
            tr_cmd += " --use_dgc"

1099 1100 1101
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1102 1103 1104
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1105 1106
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1107
        if self._mp_mode:
W
WangXi 已提交
1108
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1109 1110

        if self._nccl_comm_num > 1:
1111
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1112

1113 1114
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1115

1116
        if self._enable_backward_deps:
1117
            tr_cmd += " --enable_backward_deps"
1118

1119 1120 1121
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1122
        if self._use_fleet_api:
1123
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1124 1125 1126 1127
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1128 1129
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1130

1131 1132 1133
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1134
        return tr_cmd, env
W
Wu Yi 已提交
1135

1136 1137
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1138 1139
        if self._use_hallreduce:
            self._ps_endpoints = ""
1140 1141 1142

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1143
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1144 1145 1146 1147 1148 1149 1150
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1151
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1152

1153 1154
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1155

1156
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1157

1158 1159 1160 1161 1162 1163 1164 1165
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1166

1167
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1168

1169
            print_to_err(
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1188 1189 1190
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1191

1192
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1239
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1240 1241 1242 1243 1244 1245
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1246
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1247
            "FLAGS_rpc_retry_bind_port": "50",
1248
            "FLAGS_cudnn_deterministic": "1",
1249
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1250
            "http_proxy": "",
1251 1252
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1253 1254 1255
        }

        if check_error_log:
1256
            required_envs["GLOG_vmodule"] = \
1257 1258
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1259 1260
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1261 1262
            required_envs["GLOG_logtostderr"] = "1"

1263 1264 1265 1266 1267 1268 1269 1270 1271
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1272

1273 1274
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1275
        local_losses \
1276
            = self._run_local(model_file, required_envs,
1277 1278
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1279
        if self._nccl2_mode:
W
Wu Yi 已提交
1280 1281
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1282 1283
                    model_file,
                    required_envs,
1284 1285
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1286
                    log_name=log_name)
W
Wu Yi 已提交
1287 1288
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1289 1290
                    model_file,
                    required_envs,
1291 1292
                    update_method='nccl2',
                    check_error_log=check_error_log,
1293
                    log_name=log_name)
1294 1295 1296 1297 1298 1299 1300 1301
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1302 1303 1304
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1305 1306
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1307
                model_file, required_envs, check_error_log, log_name=log_name)
1308 1309

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1310 1311 1312
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1313 1314 1315 1316
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1317 1318
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1319 1320 1321 1322 1323 1324 1325

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1338
                devices="0,1")
1339 1340 1341 1342 1343 1344 1345

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1346
                devices="0,1")
1347 1348 1349 1350 1351 1352 1353 1354

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)