test_dist_base.py 47.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46 47 48 49 50 51 52 53
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
54 55
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
56
    if six.PY2:
57
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
58
    else:
59
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
60 61


62 63 64 65
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
66
class TestDistRunnerBase(object):
W
Wu Yi 已提交
67 68 69
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
70 71
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
72 73 74
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

75
    @staticmethod
W
Wu Yi 已提交
76 77 78 79 80
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
81
                       dc_asgd=False,
82
                       current_endpoint=None,
T
tangwei12 已提交
83 84
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
85
        # NOTE: import fluid until runtime, or else forking processes will cause error.
86
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
87
        config.enable_dc_asgd = dc_asgd
88
        config.sync_mode = sync_mode
T
tangwei12 已提交
89 90
        config.runtime_split_send_recv = hogwild_mode

91 92
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
93
        # config.runtime_split_send_recv = True
94
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
95 96 97 98
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
99
            trainers=trainers,
T
tangwei12 已提交
100
            sync_mode=sync_mode,
101
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
102 103
        return t

W
Wu Yi 已提交
104
    def run_pserver(self, args):
W
Wu Yi 已提交
105
        self.lr = args.lr
106
        self.get_model(batch_size=args.batch_size)
107
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
117 118 119
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
120

T
typhoonzero 已提交
121 122 123
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
124
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
125
        exe.run(pserver_prog)
126
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

189 190 191 192 193 194 195 196 197 198
    def run_gpu_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2"

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
199
        dist_strategy.fuse_memory_size = 1  # MB
200
        dist_strategy.fuse_laryer_size = 1
201 202 203 204
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
205 206
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
207 208 209

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
210
        print_to_err("gpu_fleet", "fleet.node_num:")
T
tangwei12 已提交
211 212
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
213 214

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
215
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

232 233 234 235 236 237 238
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

239 240 241 242 243 244 245 246 247 248 249 250 251 252
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

253
        print_to_err(type(self).__name__, "begin to train on trainer")
254 255 256 257 258 259
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
260 261
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
262 263 264 265 266 267

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

298
    def run_trainer(self, args):
W
Wu Yi 已提交
299
        self.lr = args.lr
W
Wu Yi 已提交
300 301 302
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
303 304 305
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
306 307 308
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
309

W
Wu Yi 已提交
310
        if args.update_method == "pserver":
311
            print_to_err(
312 313
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
314 315 316 317 318 319 320 321 322
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
323
            trainer_prog = t.get_trainer_program()
324
            print_to_err(
325 326
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
327
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
328 329 330
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
331
            config.nccl_comm_num = args.nccl_comm_num
332 333 334
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
335
            print_to_err(
336 337
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
338 339 340 341 342 343 344
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
345
            print_to_err(
346 347
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
348
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
349
        else:
350
            print_to_err(
351 352
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
353
            trainer_prog = fluid.default_main_program()
354
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
355

356 357 358
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

359
        if args.use_cuda:
360 361
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
362 363 364
        else:
            place = fluid.CPUPlace()

365 366
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
367
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
368

W
Wu Yi 已提交
369 370
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
371

W
Wu Yi 已提交
372
        build_stra = fluid.BuildStrategy()
373 374 375
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
376

377 378 379 380
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
381 382 383
        if args.hogwild:
            build_stra.async_mode = True

384 385 386
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
387 388 389 390 391
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
392
        pass_builder = None
X
Xin Pan 已提交
393
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
394
            pass_builder = build_stra._finalize_strategy_and_create_passes()
395
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
396
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
397

W
Wu Yi 已提交
398
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
399 400
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
401
        else:
W
Wu Yi 已提交
402
            # case args.update_method == "nccl2_reduce_layer":
403 404
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
405

406
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
407
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
408
            loss_name=avg_cost.name,
W
Wu Yi 已提交
409
            build_strategy=build_stra,
W
Wu Yi 已提交
410
            exec_strategy=exec_strategy)
411
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
412 413 414 415 416 417 418

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
419
        reader_generator = train_reader()
T
typhoonzero 已提交
420

421 422
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
423
            if args.update_method != "local" and args.use_reader_alloc:
424 425 426 427 428 429 430
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
431

432
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
433
        out_losses = []
434
        for i in six.moves.xrange(RUN_STEP):
435 436
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
437
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
438
            out_losses.append(loss[0])
439 440
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
441

442
        print_to_out(out_losses)
T
typhoonzero 已提交
443 444


445 446 447 448 449 450 451 452 453
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

454 455 456 457 458 459 460 461 462 463
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

464
    def run_trainer(self, args):
Y
Yan Xu 已提交
465

466
        seed = 90
467 468 469 470 471 472 473 474
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
475 476 477 478

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
479 480
            np.random.seed(seed)
            import random
481
            random.seed(seed)
482 483
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
484

485 486
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
487 488 489 490 491
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
492
                print_to_err(
493 494
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
495
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
496
                model = dygraph.parallel.DataParallel(model, strategy)
497
                print_to_err(type(self).__name__, "model built in dygraph")
498
            out_losses = []
499
            print_to_err(type(self).__name__, "begin to run dygraph training")
500
            for step_id, data in enumerate(train_reader()):
501
                data = self._get_data(data, args)
502 503 504
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
505
                if step_id % 10 == 0:
506
                    print_to_err(
507
                        type(self).__name__,
508
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
509
                out_losses.append(loss.numpy())
510 511 512 513 514

                loss.backward()

                opt.minimize(loss)
                model.clear_gradients()
515
        print_to_out(out_losses)
516

517 518 519 520 521 522 523 524 525
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
526
        random.seed(seed)
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            model = paddle.DataParallel(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

553 554 555 556 557 558 559 560 561 562 563
    def run_gpu_fleet_api_trainer(self, args):
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
564
        random.seed(seed)
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            fleet.init(is_collective=True)

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
            opt.clear_grad()
        print_to_out(out_losses)

592

T
typhoonzero 已提交
593
def runtime_main(test_class):
W
Wu Yi 已提交
594 595 596 597
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
598 599 600 601
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
602
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
603 604
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
605
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
606 607
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
608
    parser.add_argument('--use_pipeline', action='store_true')
609
    parser.add_argument('--gpu_fleet_api', action='store_true')
610 611
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
612
    parser.add_argument(
613
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
614 615 616
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
617
    parser.add_argument('--use_cuda', action='store_true')
618
    parser.add_argument('--use_xpu', action='store_true')
619
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
620
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
621
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
622
    parser.add_argument('--hogwild', action='store_true')
623
    parser.add_argument('--save_model', action='store_true')
624
    parser.add_argument(
W
Wu Yi 已提交
625
        '--use_reader_alloc', action='store_true', required=False)
626
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
627
    parser.add_argument('--lr', required=False, type=float, default=0.001)
628 629
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
630 631 632 633 634
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
635
    parser.add_argument('--sync_batch_norm', action='store_true')
636 637 638 639 640
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
641 642

    args = parser.parse_args()
T
typhoonzero 已提交
643 644

    model = test_class()
W
Wu Yi 已提交
645
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
646
        model.run_pserver(args)
647 648
    elif args.gpu_fleet_api:
        model.run_gpu_fleet_api_trainer(args)
649 650
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
651
    else:
652
        model.run_trainer(args)
X
Xin Pan 已提交
653

M
minqiyang 已提交
654

M
minqiyang 已提交
655
import paddle.compat as cpt
Y
Yancey1989 已提交
656 657
import socket
from contextlib import closing
M
minqiyang 已提交
658

X
Xin Pan 已提交
659 660

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
661 662 663
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

664 665 666
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
667
            self.__use_xpu = False
668
            self._use_dgc = False
669 670
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
671 672 673 674 675
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
676 677 678 679 680
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
681 682 683 684
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
685

X
Xin Pan 已提交
686 687 688
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
689
        self._port_set = set()
M
minqiyang 已提交
690
        self._python_interp = sys.executable
W
Wu Yi 已提交
691
        self._sync_mode = True
T
tangwei12 已提交
692
        self._hogwild_mode = False
693
        self._enforce_place = None
W
Wu Yi 已提交
694
        self._use_reduce = False
W
Wu Yi 已提交
695
        self._dc_asgd = False  # must use with async mode
696
        self._use_reader_alloc = True
W
Wu Yi 已提交
697
        self._nccl2_mode = False
698
        self._bkcl_mode = False
699
        self._pipeline_mode = False
700
        self._mp_mode = False
W
Wu Yi 已提交
701 702 703 704 705
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
706
        self._lr = 0.001
707
        self._use_dgc = False
708
        self._dygraph = False
709
        self._nccl_comm_num = 1
710
        self._enable_backward_deps = False
711
        self._gpu_fleet_api = False
712 713
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
714
        self._use_hallreduce = False
715
        self._save_model = False
716
        self._fuse_all_reduce = None
W
Wu Yi 已提交
717
        self._setup_config()
718 719 720 721 722 723 724 725 726 727 728 729 730 731

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

732
        self._after_setup_config()
X
Xin Pan 已提交
733

Y
Yancey1989 已提交
734
    def _find_free_port(self):
Y
Yancey1989 已提交
735 736 737 738
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
739
                print_to_err(
740
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
741 742 743 744 745 746 747
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
748

749 750 751 752 753
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
754
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
755 756 757 758 759 760 761 762
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
763
        ps0_cmd = ps_cmd % \
764 765
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
766
        ps1_cmd = ps_cmd % \
767 768
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
769 770 771 772

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
773

774 775
        print(ps0_cmd)
        print(ps1_cmd)
776 777
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
778

779
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
780
        ps0_proc = subprocess.Popen(
781 782 783 784
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
785
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
786
        ps1_proc = subprocess.Popen(
787 788 789 790
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
791

792
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
793

794 795 796 797 798
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
799
                   batch_merge_repeat=1,
800
                   log_name="",
801
                   devices="0"):
G
gongweibao 已提交
802

803 804 805 806 807 808
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

809 810
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
811

812 813 814 815
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
816 817
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
818

819
        if self.__use_cuda:
820
            cmd += " --use_cuda"
W
Wu Yi 已提交
821
            env_local = {
822 823 824 825 826 827 828 829
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
830 831 832
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
833 834 835
        else:
            env_local = {'CPU_NUM': '1'}

836
        # not use dgc in single card
837
        if len(devices) > 1 and self._use_dgc:
838 839
            cmd += " --use_dgc"

W
Wu Yi 已提交
840 841
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
842

843
        if check_error_log:
844
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
845
            local_proc = subprocess.Popen(
846
                cmd.split(" "),
G
gongweibao 已提交
847
                stdout=subprocess.PIPE,
848
                stderr=err_log,
W
Wu Yi 已提交
849
                env=env_local)
G
gongweibao 已提交
850 851
        else:
            local_proc = subprocess.Popen(
852
                cmd.split(" "),
G
gongweibao 已提交
853
                stdout=subprocess.PIPE,
854
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
855
                env=env_local)
G
gongweibao 已提交
856

857 858 859 860 861 862
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
863
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
864

W
Wu Yi 已提交
865
        return pickle.loads(local_out)
866

867
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
868
        # Run dist train to compare with local results
869 870
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
871

X
Xin Pan 已提交
872
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
873

874 875 876 877 878 879 880 881
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
882
        tr0_cmd = tr_cmd % \
883
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
884
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
885
        tr1_cmd = tr_cmd % \
886
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
887
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
888 889 890 891

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
892 893 894
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
895 896 897
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
898 899 900
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
901
        if self.__use_cuda:
902 903 904 905 906 907 908 909 910 911
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
912

W
Wu Yi 已提交
913 914
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
915 916
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
917

918
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
919
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
920
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
921
            stdout=subprocess.PIPE,
G
gongweibao 已提交
922
            stderr=tr0_pipe,
X
Xin Pan 已提交
923
            env=env0)
924
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
925
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
926
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
927
            stdout=subprocess.PIPE,
G
gongweibao 已提交
928
            stderr=tr1_pipe,
X
Xin Pan 已提交
929 930
            env=env1)

931 932 933 934 935 936 937 938 939 940 941 942
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

943 944
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
945

G
gongweibao 已提交
946
        # close trainer file
947 948 949 950
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
951

W
Wu Yi 已提交
952 953
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
954

W
Wu Yi 已提交
955 956
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

957 958 959
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
960 961 962 963 964 965 966
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

967
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
968 969
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
970 971

        if self._use_reduce:
972
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
973
        if self._use_reader_alloc:
974
            tr_cmd += " --use_reader_alloc"
975 976
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
977
        if self.__use_cuda:
978 979
            tr_cmd += " --use_cuda"
            env.update({
980
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
981
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
982
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
983 984 985
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
986
            })
987 988 989 990 991 992 993 994 995 996 997 998 999
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1000
        else:
1001
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1002

1003
        if self._use_dgc:
1004 1005
            tr_cmd += " --use_dgc"

1006 1007
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1008
        if self._mp_mode:
W
WangXi 已提交
1009
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1010 1011

        if self._nccl_comm_num > 1:
1012
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1013

1014 1015
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1016

1017
        if self._enable_backward_deps:
1018
            tr_cmd += " --enable_backward_deps"
1019

1020 1021 1022
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1023 1024
        if self._gpu_fleet_api:
            tr_cmd += " --gpu_fleet_api"
1025 1026 1027 1028
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1029 1030
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1031

1032 1033 1034
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1035
        return tr_cmd, env
W
Wu Yi 已提交
1036

1037 1038
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1039 1040
        if self._use_hallreduce:
            self._ps_endpoints = ""
1041 1042 1043

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1044
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1045 1046 1047 1048 1049 1050 1051
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1052
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1053

1054 1055
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1056

1057
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1058

1059 1060 1061 1062 1063 1064 1065 1066
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1067

1068
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1069

1070
            print_to_err(
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1089 1090 1091
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1092
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1139
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1140 1141 1142 1143 1144 1145
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1146
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1147
            "FLAGS_rpc_retry_bind_port": "50",
1148
            "FLAGS_cudnn_deterministic": "1",
1149
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1150
            "http_proxy": "",
1151 1152
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1153 1154 1155
        }

        if check_error_log:
1156
            required_envs["GLOG_vmodule"] = \
1157 1158
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1159 1160
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1161 1162
            required_envs["GLOG_logtostderr"] = "1"

1163 1164 1165 1166 1167 1168 1169 1170 1171
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1172

1173 1174
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1175
        local_losses \
1176
            = self._run_local(model_file, required_envs,
1177 1178
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1179
        if self._nccl2_mode:
W
Wu Yi 已提交
1180 1181
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1182 1183
                    model_file,
                    required_envs,
1184 1185
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1186
                    log_name=log_name)
W
Wu Yi 已提交
1187 1188
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1189 1190
                    model_file,
                    required_envs,
1191 1192
                    update_method='nccl2',
                    check_error_log=check_error_log,
1193
                    log_name=log_name)
1194 1195 1196 1197 1198 1199 1200 1201
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1202 1203 1204
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1205 1206
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1207
                model_file, required_envs, check_error_log, log_name=log_name)
1208 1209

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1210 1211 1212
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1213 1214 1215 1216
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1217 1218
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1219 1220 1221 1222 1223 1224 1225

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1238
                devices="0,1")
1239 1240 1241 1242 1243 1244 1245

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1246
                devices="0,1")
1247 1248 1249 1250 1251 1252 1253 1254

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)