tensor.py 65.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
29
from paddle.utils import deprecated
X
xuwei06 已提交
30
import numpy
31
import warnings
Y
Yu Yang 已提交
32 33

__all__ = [
L
li099 已提交
34 35 36
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
37
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
38
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
39 40 41
]


X
xuwei06 已提交
42
def create_tensor(dtype, name=None, persistable=False):
43
    """
W
wangchaochaohu 已提交
44
    Create a variable, which will hold a Tensor with data type dtype.
45 46

    Args:
W
wangchaochaohu 已提交
47 48 49 50
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
51
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
52
            default value is False.
53 54

    Returns:
W
wangchaochaohu 已提交
55
        Variable: The tensor to be created according to dtype.
56 57 58 59

    Examples:
        .. code-block:: python

60
          import paddle.fluid as fluid
61 62
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
63 64 65 66
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
67
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
68 69
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
70 71


72 73
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
74
                     name=None,
75 76 77 78
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
79
	:api_attr: Static Graph
S
swtkiwi 已提交
80

81
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
82 83 84 85 86
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

87 88 89 90 91 92 93
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
94 95 96
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
97
        default_initializer (Initializer, optional): Initializer for the parameter
98 99

    Returns:
100
        The created parameter.
Y
yuyang18 已提交
101 102

    Examples:
103 104
        .. code-block:: python

105
            import paddle.fluid as fluid
106 107
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
108
    """
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
128
    helper = LayerHelper("create_parameter", **locals())
129
    if attr is None:
X
xuwei06 已提交
130
        attr = ParamAttr(name=name)
131 132
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
133 134 135
                                   default_initializer)


136 137 138 139 140 141 142
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
143
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
144

145 146 147
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
148
                      variable will be filled with it.
149 150
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
151
                           Default: False
152
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
153
                         Default: False
154 155
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
156 157

    Returns:
158
        Variable: The created Variable
F
fengjiayi 已提交
159 160 161 162

    Examples:
        .. code-block:: python

163
            import paddle.fluid as fluid
164 165
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
166
                                           persistable=True, force_cpu=True, name='new_var')
167
    """
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
185 186
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
187 188 189 190 191
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
192 193 194
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
195

Q
Qiao Longfei 已提交
196 197 198
    return var


199
def cast(x, dtype):
Y
Yu Yang 已提交
200
    """
201 202 203
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
204

205 206 207
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
208 209

    Args:
210 211 212
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
213
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
214 215

    Returns:
216
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
217 218 219

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
220

221
            import paddle.fluid as fluid
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
244
    """
245 246
    check_variable_and_dtype(
        x, 'x',
247 248
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
249 250 251 252 253 254
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
255
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
256 257 258 259 260 261 262 263 264
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


265
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
266
    """
267
    This OP concatenates the input along the axis.
268 269

    Args:
270 271
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
272 273
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
274
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
275
            as ``axis+R``. Default is 0.
276 277 278
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
279
    Raises:
280 281
        TypeError: ``input`` must be one of list, tuple or Tensor.
        TypeError: The data type of ``input`` must be one of bool, float16, float32, float64, int32 and int64. 
282
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
283
        TypeError: All the Tensors in ``input`` must have the same data type.
284 285

    Returns:
286
        Tensor: A Tensor with the same data type as ``input``.
287 288 289

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
290

291
            import paddle.fluid as fluid
292 293
            import numpy as np

294 295 296 297 298 299
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
300 301 302 303
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
304 305
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
306 307
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
308 309 310 311 312 313 314 315
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
316
    """
317 318

    if in_dygraph_mode():
S
songyouwei 已提交
319 320
        if isinstance(axis, Variable):
            axis = axis.numpy()
321
            axis = axis.item(0)
322
        return core.ops.concat(input, 'axis', axis)
323

324 325 326 327 328 329 330 331 332 333 334
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
335
        input = [input]
336
    check_type(axis, 'axis', (int, Variable), 'concat')
337

338 339 340 341 342
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

343
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
344
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
345 346 347

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
348
                "number of the elements must be 1, but received %s." % len(input)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
368 369 370
    return out


G
Guo Sheng 已提交
371
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
372
    """
G
Guo Sheng 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
423 424

    Args:
G
Guo Sheng 已提交
425 426 427 428 429 430 431
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
432 433

    Returns:
G
Guo Sheng 已提交
434 435 436
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
437 438 439 440

    Examples:
        .. code-block:: python

441
            import paddle.fluid as fluid
442
            import numpy as np
G
Guo Sheng 已提交
443 444 445 446 447 448 449
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
450
    """
451 452 453 454 455 456 457 458 459 460 461
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

462 463 464 465 466
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
467
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
468 469 470
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
471
        type='tensor_array_to_tensor',
L
li099 已提交
472 473 474
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
475 476
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
477 478 479
    return out, out_index


480
def sums(input, out=None):
F
fengjiayi 已提交
481
    """
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
503 504

    Args:
505 506 507 508
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
509 510

    Returns:
511 512
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
513 514

    Examples:
F
fengjiayi 已提交
515
        .. code-block:: python
K
kavyasrinet 已提交
516

517 518 519 520 521 522 523 524 525
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
526

527 528
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
529
    """
530 531 532 533 534 535 536 537 538
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
539 540
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
541 542
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
543 544 545 546
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
547 548 549 550 551
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
552 553 554
    return out


F
fengjiayi 已提交
555
def assign(input, output=None):
556
    """
557 558 559
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
560

561
    The OP copies the :attr:`input` to the :attr:`output`.
562

563 564
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
565
            float16, float32, float64, int32 and int64.
566 567
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
568 569

    Returns:
570
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
571 572 573

    Examples:
        .. code-block:: python
574

575
          import paddle.fluid as fluid
576 577 578 579 580 581
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
582
    """
Y
Yu Yang 已提交
583
    helper = LayerHelper('assign', **locals())
584
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
585
    if isinstance(input, Variable):
586 587 588 589
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
590 591 592
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
593
        helper.append_op(
R
robot 已提交
594
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
595 596
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
597 598 599 600
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
601
            value_name = "fp32_values"
602
            values = [float(v) for v in input.flat]
603
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
604
            value_name = "int32_values"
605
            values = [int(v) for v in input.flat]
606 607 608
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
609
        else:
610 611
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
612
                "the data type of 'input' must be bool, float32, int32 or int64, but "
613
                "received %s." % convert_dtype(dtype))
614 615 616
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
617 618 619
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
620 621 622 623 624 625
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
626
                value_name: values
X
xuwei06 已提交
627 628
            })

Y
Yu Yang 已提交
629 630 631
    return output


632
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
633
    """
634
	:alias_main: paddle.fill_constant
635
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
636

W
wangchaochaohu 已提交
637
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
638
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
639

T
tianshuo78520a 已提交
640
    The attribute `stop_gradient` of the created Tensor is set to True.
641 642

    Args:
643 644 645
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
646
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
647
            be float16, float32, float64, int32, int64.
648 649 650 651 652 653
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
654 655
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
656 657

    Returns:
658
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
659

660
    Raises:
W
wangchaochaohu 已提交
661
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
662 663 664
            and the data type of ``out`` must be the same as the ``dtype``. 
        TypeError: The shape must be one of list, tuple and Tensor, the data type of ``shape``
            must be int32 or int64 when ``shape`` is a Tensor
665 666 667 668

    Examples:
        .. code-block:: python

669
          import paddle.fluid as fluid
670
          # attr shape is a list which doesn't contain  Tensor.
671 672
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
673
          # data1=[[5], [5]] data2=[[5], [5]]
674

675
          # attr shape is a list which contains Tensor.
676
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
677
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
678

679
          # attr shape is a Tensor.
680
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
681
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
682
          
683
          # attr value is a Tensor.
W
wangchaochaohu 已提交
684 685
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
686
    """
687

W
wangchaochaohu 已提交
688
    attrs = {'force_cpu': force_cpu}
689
    dtype = convert_dtype(dtype)
690
    if not isinstance(value, Variable):
691
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
692 693 694
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
695 696

    if in_dygraph_mode():
697
        shape = utils._convert_shape_to_list(shape)
698 699
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
700 701

        if isinstance(value, Variable):
702
            if dtype in ['int64', 'int32']:
703
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
704
            else:
705
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
706

707 708
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
709 710
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
711 712 713
        out.stop_gradient = True
        return out

714 715 716
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
717 718
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
719 720
        inputs['ValueTensor'] = value

721
    check_dtype(dtype, 'dtype',
722 723 724
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
725

726
    if isinstance(shape, Variable):
727 728
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')

729 730 731 732 733
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
734 735
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
736

Y
Yu Yang 已提交
737
    if out is None:
X
Xin Pan 已提交
738
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
739
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
740 741
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
742
        inputs=inputs,
Y
Yu Yang 已提交
743
        outputs={'Out': [out]},
L
liym27 已提交
744
        attrs=attrs,
M
minqiyang 已提交
745
        stop_gradient=True)
Y
Yu Yang 已提交
746 747 748 749
    out.stop_gradient = True
    return out


750
@deprecated(since='1.8.0', update_to="paddle.fill_constant")
Y
yuyang18 已提交
751
@templatedoc()
Y
Yu Yang 已提交
752 753 754 755 756
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
757 758
                                  output_dim_idx=0,
                                  force_cpu=False):
759
    """
T
tianshuo78520a 已提交
760
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
761 762 763 764
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
765 766

    Args:
W
wangchaochaohu 已提交
767 768 769 770 771 772 773 774 775 776 777
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
778
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
779 780

    Returns:
W
wangchaochaohu 已提交
781
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
782 783 784 785 786

    Examples:

        .. code-block:: python

787
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
788
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
789
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
790
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
791

792
    """
Y
Yu Yang 已提交
793
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
794
    out = helper.create_variable_for_type_inference(dtype=dtype)
795 796 797 798 799 800
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
801
        'force_cpu': force_cpu
802 803 804 805 806
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
807 808 809 810
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
811
        attrs=attrs)
Y
Yu Yang 已提交
812 813 814 815
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
816 817
def argmin(x, axis=0):
    """
818 819 820
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
821

S
sneaxiy 已提交
822 823
    **argmin**

824 825
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
826 827

    Args:
828 829 830 831 832
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
833

S
sneaxiy 已提交
834
    Returns:
835
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
836

S
sneaxiy 已提交
837 838
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
839

840
            import paddle.fluid as fluid
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
868
    """
869 870 871
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
872
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
873
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
874 875 876 877 878
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
879
    out.stop_gradient = True
S
sneaxiy 已提交
880 881 882 883 884 885 886
    return out


def argmax(x, axis=0):
    """
    **argmax**

887 888
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
889 890

    Args:
891 892 893 894 895
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
896

S
sneaxiy 已提交
897
    Returns:
898
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
899

S
sneaxiy 已提交
900 901
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
902

903
            import paddle.fluid as fluid
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
931
    """
932 933 934
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
935
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
936
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
937 938 939 940 941
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
942
    out.stop_gradient = True
S
sneaxiy 已提交
943 944 945
    return out


946
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
947
    """
948 949 950
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
951

952 953 954
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
955 956

    Args:
957 958 959 960 961
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
962 963 964
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
965 966 967
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
968 969

    Returns:
970 971 972
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
973 974 975 976

    Examples:
        .. code-block:: python

977
            import paddle.fluid as fluid
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1019
    """
1020 1021 1022
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1023
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1024 1025 1026 1027
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1028 1029 1030 1031
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1032
                 'Indices': ids},
1033 1034
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1035 1036 1037
    return out, ids


Y
Yang Yu 已提交
1038
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1039
    """
1040 1041
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1042

1043
    Parameters:
1044
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1045
        dtype (np.dtype|str): Data type of output Tensor, it supports
1046
            bool, float16, float32, float64, int32 and int64.
1047 1048
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1049
            Default: False.
1050 1051

    Returns:
1052 1053
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
    Raises:
1054
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64.
1055 1056
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1057 1058 1059 1060

    Examples:
        .. code-block:: python

1061
          import paddle.fluid as fluid
1062 1063 1064 1065 1066
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1067 1068 1069 1070
    """
    return fill_constant(value=1.0, **locals())


1071
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1072
    """
1073 1074
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1075

1076
    Parameters:
1077
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1078
        dtype (np.dtype|str): Data type of output Tensor, it supports
1079
            bool, float16, float32, float64, int32 and int64.
1080 1081
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1082
            Default: False.
1083 1084
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1085 1086

    Returns:
1087
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1088

1089
    Raises:
1090
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64.
1091 1092
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1093 1094 1095
    Examples:
        .. code-block:: python

1096
          import paddle.fluid as fluid
1097
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1098 1099 1100 1101
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1102 1103
    """
    return fill_constant(value=0.0, **locals())
1104 1105


F
fengjiayi 已提交
1106 1107
def reverse(x, axis):
    """
1108 1109 1110
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1111

1112
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1138
    Parameters:
1139 1140
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1141 1142
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1143 1144
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1145 1146

    Returns:
1147
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1148 1149 1150 1151

    Examples:
        .. code-block:: python

1152
          import paddle.fluid as fluid
1153 1154 1155 1156
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1167
    """
1168 1169 1170
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1171 1172 1173
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1174
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1175 1176
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1177
        inputs={'X': x},
F
fengjiayi 已提交
1178 1179 1180 1181 1182
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1183 1184 1185 1186 1187 1188 1189
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1190 1191 1192
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1208 1209
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1210
        file_path(str): The file path where variables will be saved.
1211
        overwrite(bool): Whether or not cover the given file when it has already
1212 1213
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1214 1215 1216 1217 1218 1219 1220 1221

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1222
            import paddle.fluid as fluid
1223 1224 1225 1226 1227 1228 1229
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1242
    Loads a list of variable from a single file.
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1254 1255 1256 1257


def has_inf(x):
    """
1258 1259 1260
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1261

1262 1263 1264
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1265
       x (Variable): The Tensor/LoDTensor to be checked.
1266 1267

    Returns:
L
liu zhengxi 已提交
1268
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1269 1270 1271 1272 1273 1274 1275 1276
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1277
    """
1278
    check_type(x, 'x', (Variable), 'has_inf')
1279
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1280
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1281 1282 1283 1284 1285 1286
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1287 1288 1289
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1290

1291 1292 1293
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1294
       x (Variable): The Tensor/LoDTensor to be checked.
1295 1296

    Returns:
L
liu zhengxi 已提交
1297
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1298 1299 1300 1301 1302 1303 1304 1305
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1306
    """
1307
    check_type(x, 'x', (Variable), 'has_nan')
1308
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1309
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1310 1311 1312 1313 1314 1315
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1316 1317 1318
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1319

1320 1321 1322 1323 1324 1325 1326 1327
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1328 1329 1330 1331 1332

    Examples:

        .. code-block:: python

1333
            import paddle.fluid as fluid
1334 1335 1336
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1337
            out = fluid.layers.isfinite(var)
1338
    """
1339 1340
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1341
    helper = LayerHelper("isfinite", **locals())
1342

1343
    out = helper.create_variable_for_type_inference(dtype='bool')
1344 1345
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1346 1347


1348
def range(start, end, step, dtype, name=None):
W
whs 已提交
1349
    """
1350
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1351

1352 1353
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1354

1355 1356
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1357

L
Liufang Sang 已提交
1358
    Parameters:
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1382 1383 1384 1385 1386

    examples:

        .. code-block:: python

1387
            import paddle.fluid as fluid
W
whs 已提交
1388

1389 1390
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1391

1392 1393 1394 1395 1396 1397 1398
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1399

W
whs 已提交
1400
    if not isinstance(start, Variable):
1401 1402
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1403 1404
    elif start.dtype != dtype:
        start = cast(start, dtype)
1405

W
whs 已提交
1406
    if not isinstance(end, Variable):
1407 1408
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1409 1410
    elif end.dtype != dtype:
        end = cast(end, dtype)
1411

W
whs 已提交
1412
    if not isinstance(step, Variable):
1413 1414
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1415 1416
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1417

1418 1419
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1420

1421 1422 1423 1424
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1425 1426 1427 1428 1429
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1430
        outputs={'Out': out})
1431
    out.stop_gradient = True
W
whs 已提交
1432
    return out
Z
zhoukunsheng 已提交
1433 1434


1435
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1436
    """
1437
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1438 1439

    Args:
1440 1441 1442 1443
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1444
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1445
            or a Tensor of shape [1] with data type int32 or int64.
W
wangchaochaohu 已提交
1446
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1447
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1448 1449
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1450 1451

    Returns:
1452
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1453 1454
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1455

1456
    Raises:
1457 1458 1459 1460 1461
        TypeError: The ``dtype`` must be one of int32, int64, float32 and float64.
        TypeError: The type of ``num`` must be int When it's not a Tensor.
        TypeError: The data type of ``num`` must be int32  When it's  a Tensor.
        TypeError: The data type of ``start`` and  ``stop`` must be same as ``dtype`` When it's  a Tensor.

1462 1463


Z
zhoukunsheng 已提交
1464
    Examples:
Z
zhoukunsheng 已提交
1465 1466
        .. code-block:: python

1467
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1468 1469
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1470 1471

    """
1472 1473
    if dtype is None:
        dtype = 'float32'
1474 1475 1476 1477 1478
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1479
    if not isinstance(start, Variable):
1480
        tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1481
    if not isinstance(stop, Variable):
1482
        tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1483
    if not isinstance(num, Variable):
1484
        tensor_num = fill_constant([1], 'int32', num)
1485
    if in_dygraph_mode():
1486 1487
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1488 1489 1490

    helper = LayerHelper("linspace", **locals())

1491 1492 1493 1494
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start', (convert_dtype(dtype)), 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop', (convert_dtype(dtype)), 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    else:
        check_type(num, 'num', (int), 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1508 1509 1510

    helper.append_op(
        type='linspace',
1511 1512 1513 1514
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1515 1516
        outputs={'Out': [out]})
    return out
1517 1518


Z
zhoukunsheng 已提交
1519 1520
def zeros_like(x, out=None):
    """
1521
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1522 1523 1524
    with `x`.

    Args:
1525 1526 1527 1528 1529 1530
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1531 1532

    Returns:
1533 1534 1535
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1536 1537 1538 1539

    Examples:
        .. code-block:: python

1540
          import paddle.fluid as fluid
1541
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1542 1543
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1544 1545
    """

1546 1547
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1548 1549 1550
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1551 1552 1553
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1554
            'zeros_like')
1555

Z
zhoukunsheng 已提交
1556 1557 1558 1559
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1560 1561


1562
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1563 1564
def diag(diagonal):
    """
1565 1566 1567
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1568

1569
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1570 1571

    Args:
1572 1573
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1574 1575

    Returns:
1576 1577
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1578 1579 1580 1581 1582 1583 1584

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1585 1586 1587

          import paddle.fluid as fluid
          import numpy as np
1588 1589 1590
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1591 1592

    """
1593 1594 1595
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1608 1609


1610 1611 1612 1613 1614
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1615
    """
1616
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1617 1618 1619

    Args:
        num_rows(int): the number of rows in each batch tensor.
1620 1621
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1622 1623
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1624
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1625 1626 1627 1628
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1629 1630

    Returns:
1631
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1632 1633 1634
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
        TypeError: The `num_columns` must be non-negative int.
1635 1636 1637 1638 1639

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1640 1641
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1642
          #  [0, 1, 0]
1643 1644
          #  [0, 0, 1]]

1645
          data = fluid.layers.eye(2, 3, dtype='int32')
1646
          # [[1, 0, 0]
1647
          #  [0, 1, 0]]
1648 1649

          data = fluid.layers.eye(2, batch_shape=[3])
1650 1651 1652 1653 1654
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1655 1656
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1657 1658 1659 1660 1661
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1684 1685

    if batch_shape is not None:
1686 1687 1688 1689 1690 1691 1692
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1693 1694
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1695
        for batch_val in (batch_shape):
1696 1697
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1698 1699 1700 1701 1702 1703

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1704 1705 1706
    return out


Z
zhoukunsheng 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1719
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1730 1731
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1732 1733 1734 1735

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1736 1737 1738 1739
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1740 1741 1742 1743 1744 1745
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out