build_strategy.cc 20.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17
#include <glog/logging.h>
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_printer.h"
20
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
21

22
DECLARE_bool(use_mkldnn);
23
DECLARE_bool(convert_all_blocks);
24

25 26 27 28
namespace paddle {
namespace framework {
namespace details {

29
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
30 31
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
32
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
33
  // don't need to append it here.
Y
Yancey1989 已提交
34
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
35 36
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
37 38
}

C
chengduo 已提交
39 40 41 42 43 44
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

45 46 47 48
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
49
    ResolveOptionConfliction();
C
chengduo 已提交
50

C
chengduo 已提交
51 52 53 54 55 56 57
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
58

59
    AppendAddReaderDependencyPass();
C
chengduo 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
73

C
chengduo 已提交
74 75
    SetCollectiveContext();
  }
76

C
chengduo 已提交
77 78 79
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
80
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
81
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
82 83
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
84
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
85 86 87
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
88
    }
C
chengduo 已提交
89
    if (strategy_.is_distribution_) {
C
chengduo 已提交
90
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
91 92 93
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
94
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
95 96 97
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
98
    }
C
chengduo 已提交
99
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
100
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
101 102 103
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
104
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
105 106
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
107
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
108
    }
C
chengduo 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
122 123
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
124 125 126 127
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
128 129
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
130
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
131
    }
C
chengduo 已提交
132
  }
133

C
chengduo 已提交
134 135 136 137 138 139
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
140

C
chengduo 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
156

C
chengduo 已提交
157 158 159
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
160
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
Z
Zhang Ting 已提交
161
    AppendPassWithCheck(strategy_.fuse_bn_add_act_ops_, "fuse_bn_add_act_pass");
162 163
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    !defined(_WIN32) && !defined(__APPLE__)
164 165
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
#endif
C
chengduo 已提交
166 167
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
168
    // for single card training, fuse_all_reduce_ops is unnecessary.
169
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
170 171
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
172
    // Fuse all the optimization operators.
C
chengduo 已提交
173 174 175
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
176
    if (strategy_.fuse_all_optimizer_ops_ == true) {
177 178 179
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
180
    }
C
chengduo 已提交
181
  }
C
chengduo 已提交
182

C
chengduo 已提交
183 184 185 186
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
187 188 189 190 191 192 193
    PADDLE_ENFORCE_GE(
        strategy_.trainer_id_, 0,
        platform::errors::InvalidArgument(
            "The trainer_id_ of strategy_ must be greater than or equal to 0, "
            "but received strategy_.trainer_id_ = %d.",
            strategy_.trainer_id_));

C
chengduo 已提交
194
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
195 196 197 198 199 200 201 202 203 204
      PADDLE_ENFORCE_LT(
          static_cast<size_t>(strategy_.trainer_id_),
          strategy_.trainers_endpoints_.size(),
          platform::errors::InvalidArgument(
              "The trainer_id_ of strategy_ must be less than the "
              "size of vector strategy_.trainers_endpoints_, "
              "but received strategy_.trainer_id_ = %d, "
              "the size of strategy_.trainers_endpoints_ is %d.",
              static_cast<size_t>(strategy_.trainer_id_),
              strategy_.trainers_endpoints_.size()));
S
sneaxiy 已提交
205
    }
C
chengduo 已提交
206
    VLOG(1) << "CollectiveContext:" << context->String();
207 208
  }

209 210 211 212
  void AppendAddReaderDependencyPass() {
    AppendPass("add_reader_dependency_pass");
  }

213
  // Convert graph to run on multi-devices.
C
chengduo 已提交
214
  void AppendMultiDevPass() {
C
chengduo 已提交
215
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
216 217 218
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
219 220
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
221 222 223 224 225 226 227 228 229 230
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
231 232
          PADDLE_THROW(
              platform::errors::Unimplemented("Unknown reduce strategy."));
233 234 235 236 237 238
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
239 240 241 242 243 244 245 246 247 248 249
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
250 251 252 253 254
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
255 256 257 258 259 260 261 262 263 264 265
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
T
tangwei12 已提交
266 267 268 269 270
      VLOG(1) << "mkldnn_enabled_op_types specify the operator type list to "
                 "use MKLDNN acceleration. It is null in default, means "
                 "that all the operators supported by MKLDNN will be "
                 "accelerated. And it should not be set when "
                 "FLAGS_use_mkldnn=false.";
C
chengduo 已提交
271 272
    }
#else
273 274 275 276 277
    PADDLE_ENFORCE_NE(FLAGS_use_mkldnn, true,
                      platform::errors::PreconditionNotMet(
                          "FLAGS_use_mkldnn has been set to True, but "
                          "PaddlePaddle is compiled without MKLDNN. "
                          "Please compile PaddlePaddle with MKLDNN first."));
C
chengduo 已提交
278 279 280
#endif
  }

281 282 283 284
 private:
  BuildStrategy strategy_;
};

285
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
286 287
    bool finalize_strategy) const {
  if (is_finalized_) {
288 289
    return pass_builder_;
  }
290
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
291 292
  if (finalize_strategy) {
    is_finalized_ = true;
293
  }
X
fix  
Xin Pan 已提交
294
  return pass_builder_;
295 296
}

297
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
298
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
299 300
}

301 302 303 304 305
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
306
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
307
                                DeviceType use_device,
308
                                platform::NCCLCommunicator *nccl_ctxs) const {
309 310 311
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
                                DeviceType use_device,
                                platform::BKCLCommunicator *bkcl_ctxs) const {
312
#else
313
                                DeviceType use_device) const {
314
#endif
C
chengduo 已提交
315
  VLOG(1) << "apply all passes";
316 317 318 319 320
  if (FLAGS_convert_all_blocks) {
    PADDLE_ENFORCE_EQ(
        graph->IsMainGraph(), true,
        platform::errors::InvalidArgument("This graph is not main_graph"));
  }
321 322
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
323 324

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
325
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
326 327 328
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
329 330
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
331 332
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
333
                                                    &local_scopes);
334 335
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
336

337
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
338 339
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
340
      pass->Erase(kNCCLCtxs);
341
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
342 343 344 345 346 347
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      // ToDo: more check
      platform::BKCLCommunicator *bkcl_ctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, bkcl_ctx);
348
#endif
C
chengduo 已提交
349
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
350 351
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
352 353 354 355 356
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
357
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
358 359
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
360 361 362 363 364
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
365 366 367 368 369 370 371 372 373 374 375
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
376
#endif
377
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
378 379
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
380
    } else if (pass->Type() == "sequential_execution_pass") {
381 382
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
383
    } else if (pass->Type() == "all_reduce_deps_pass") {
384
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
385 386
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
387
      pass->Erase(kNCCLCtxs);
388
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
389 390 391
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
392 393 394 395 396 397 398 399 400 401 402
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
403
#endif
404 405
      VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
              << ", num_trainers:" << num_trainers_;
406
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
407
      if (use_device != p::kCUDA) {
T
tangwei12 已提交
408 409
        VLOG(1) << "fuse_relu_depthwise_conv_pass is only supported on "
                   "GPU, skipped.";
410 411
        continue;
      }
412
    } else if (pass->Type() == "fusion_group_pass") {
413 414
      pass->Set<bool>("use_gpu", new bool((use_device == p::kCUDA)));
      if (use_device != p::kCUDA) {
T
tangwei12 已提交
415
        VLOG(1) << "fusion_group_pass is only supported on GPU, skipped.";
416 417
        continue;
      }
Z
Zhen Wang 已提交
418
    } else if (pass->Type() == "fuse_bn_act_pass") {
419
      if (use_device != p::kCUDA) {
T
tangwei12 已提交
420 421
        VLOG(1) << "fuse_bn_act_pass is only supported on "
                   "GPU, skipped.";
Z
Zhen Wang 已提交
422 423
        continue;
      }
Z
Zhang Ting 已提交
424
    } else if (pass->Type() == "fuse_bn_add_act_pass") {
425
      if (use_device != p::kCUDA) {
T
tangwei12 已提交
426 427
        VLOG(1) << "fuse_bn_add_act_pass is only supported on "
                   "GPU, skipped.";
Z
Zhang Ting 已提交
428 429
        continue;
      }
430 431 432
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
433
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
434
      if (use_device != p::kCUDA) {
435 436 437 438
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
439
    }
C
chengduo 已提交
440
    VLOG(1) << "Start Apply Pass " << pass->Type();
441 442 443 444 445 446 447 448
    if (FLAGS_convert_all_blocks) {
      for (size_t i = 0; i < graph->SubGraphsSize(); ++i) {
        VLOG(3) << "Apply Pass " << pass->Type() << "to SubGraph " << i;
        pass->Apply(graph->GetSubGraph(i));
      }
    } else {
      graph = pass->Apply(graph);
    }
C
chengduo 已提交
449
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
450
  }
C
chengduo 已提交
451
  VLOG(1) << "All Passes Applied";
452 453
  return graph;
}
D
dzhwinter 已提交
454

455 456 457 458
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
459
USE_PASS(sync_batch_norm_pass);
460
USE_PASS(fuse_relu_depthwise_conv_pass);
461
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
462
USE_PASS(fuse_bn_act_pass);
Z
Zhang Ting 已提交
463
USE_PASS(fuse_bn_add_act_pass);
464
USE_PASS(graph_viz_pass);
465
USE_PASS(multi_batch_merge_pass);
466
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
467
USE_PASS(all_reduce_mode_multi_devices_pass);
468
USE_PASS(dist_multi_devices_pass);
469 470
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
471
USE_PASS(sequential_execution_pass);
472
USE_PASS(all_reduce_deps_pass);
473
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
474
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
475
USE_PASS(lock_free_optimize_pass);
476
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
477
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
478 479
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
480
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
481
USE_PASS(fuse_all_reduce_op_pass);
482
USE_PASS(runtime_context_cache_pass);
483
USE_PASS(add_reader_dependency_pass);
484 485 486
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
487 488
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    !defined(_WIN32) && !defined(__APPLE__)
489 490
USE_PASS(fusion_group_pass);
#endif