build_strategy.cc 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimize_helper.h"
28
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
29
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
30

31 32
DECLARE_bool(use_mkldnn);

33 34 35 36
namespace paddle {
namespace framework {
namespace details {

37
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
38 39
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
40
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
41
  // don't need to append it here.
Y
Yancey1989 已提交
42
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
43 44
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
45 46
}

47 48 49 50
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
51
    ResolveOptionConfliction();
C
chengduo 已提交
52

C
chengduo 已提交
53 54 55
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    // Note(zcd): record_skip_memory_opt_vars_pass should
    // be the first pass.
Z
Zeng Jinle 已提交
56
    AppendPass("record_skip_memory_opt_vars_pass");
C
chengduo 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
    // TODO(dev-paddle): memory optimize pass should be placed last.
    AppendMemoryOptimizePasses();
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
78

C
chengduo 已提交
79 80
    SetCollectiveContext();
  }
81

C
chengduo 已提交
82 83 84 85 86 87 88
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops doesn't works under "
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
S
sneaxiy 已提交
89
    }
C
chengduo 已提交
90 91 92 93 94
    if (strategy_.is_distribution_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
Q
qingqing01 已提交
95
    }
C
chengduo 已提交
96 97 98 99 100 101 102 103
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "fuse_all_optimizer_ops only work in Reducer mode.";
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
104
    }
C
chengduo 已提交
105
  }
106

C
chengduo 已提交
107 108 109 110 111 112
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
113

C
chengduo 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
129

C
chengduo 已提交
130 131 132 133 134
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
135
    // for single card training, fuse_all_reduce_ops is unnecessary.
136
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
137 138
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
139
    // Fuse all the optimization operators.
C
chengduo 已提交
140 141 142
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
143
    if (strategy_.fuse_all_optimizer_ops_) {
144 145 146
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
147
    }
C
chengduo 已提交
148
  }
C
chengduo 已提交
149

C
chengduo 已提交
150 151 152 153 154 155
  void AppendMemoryOptimizePasses() {  // Append Memory Optimize Pass
    // TODO(zjl): refactor MemoryOptimizePass to fit
    // new strategy, which does not need to set
    // var.persistable = True
    if (strategy_.use_legacy_memory_optimize_strategy_) {
      AppendPassWithCheck(strategy_.enable_inplace_, "inplace_pass");
156
    }
D
dzhwinter 已提交
157 158 159 160 161
    // NOTE(dzh): memory optimize should be a runtime pass.
    // However, after multi_devices_pass, VarHandle, OpHandle is
    // the de-fact IR, any reuse on Graph is meaningless.
    // A side-effect of that, memory optimize cannot forsee the fetched vars
    // , so fetchlist should be set persistable before call the Run interface.
162
    if (strategy_.use_legacy_memory_optimize_strategy_) {
C
chengduo 已提交
163
      AppendPassWithCheck(strategy_.memory_optimize_, "memory_optimize_pass");
164
    }
C
chengduo 已提交
165
  }
166

C
chengduo 已提交
167 168 169 170 171 172 173 174 175
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
176
    }
C
chengduo 已提交
177
    VLOG(1) << "CollectiveContext:" << context->String();
178 179
  }

180
  // Convert graph to run on multi-devices.
C
chengduo 已提交
181
  void AppendMultiDevPass() {
C
chengduo 已提交
182
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
183 184 185
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
186 187
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
188 189 190 191 192 193 194 195 196 197 198
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
199 200 201 202 203 204
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

240 241 242 243
 private:
  BuildStrategy strategy_;
};

244
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
245 246
    bool finalize_strategy) const {
  if (is_finalized_) {
247 248
    return pass_builder_;
  }
249
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
250 251
  if (finalize_strategy) {
    is_finalized_ = true;
252
  }
X
fix  
Xin Pan 已提交
253
  return pass_builder_;
254 255
}

256
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
257
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
258 259
}

260 261 262 263 264
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
P
peizhilin 已提交
265
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
266 267
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
268
#else
269
                                const bool use_cuda) const {
270
#endif
271
  VLOG(3) << "apply all passes";
272 273
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
274 275

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
G
gongweibao 已提交
276
    VLOG(3) << "BuildStrategy::Apply pass:" << pass->Type();
277 278 279
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
280 281
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
282 283
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
284
                                                    &local_scopes);
285 286
      pass->Erase(ir::kNRanks);
      pass->Set<size_t>(ir::kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
287

P
peizhilin 已提交
288
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
289
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
290
      pass->Erase(kNCCLCtxs);
291
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
292
#endif
C
chengduo 已提交
293
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
C
chengduo 已提交
294 295 296 297 298 299
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
300 301 302 303 304 305
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
306
#endif
307
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
C
chengduo 已提交
308 309 310 311 312
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
S
sneaxiy 已提交
313
    } else if (pass->Type() == "sequential_execution_pass") {
314 315
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
316
    } else if (pass->Type() == "all_reduce_deps_pass") {
317
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
318
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
319
      pass->Erase(kNCCLCtxs);
320
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
321 322 323 324
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
325 326
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
327 328 329 330 331 332
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
333
    } else if (pass->Type() == "inplace_pass") {
334 335
      pass->Erase(ir::kUseCuda);
      pass->Set<bool>(ir::kUseCuda, new bool(use_cuda));
336 337 338
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
339 340 341 342 343 344
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
345
    }
346
    VLOG(3) << "Start Apply Pass " << pass->Type();
347
    graph = pass->Apply(graph);
348
    VLOG(3) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
349
  }
Q
Qiao Longfei 已提交
350
  VLOG(3) << "All Passes Applied";
351 352
  return graph;
}
D
dzhwinter 已提交
353

354 355 356 357
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
358
USE_PASS(sync_batch_norm_pass);
359
USE_PASS(fuse_relu_depthwise_conv_pass);
360 361
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
362
USE_PASS(multi_batch_merge_pass);
363
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
364
USE_PASS(all_reduce_mode_multi_devices_pass);
365
USE_PASS(dist_multi_devices_pass);
366 367
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
D
dzhwinter 已提交
368
USE_PASS(memory_optimize_pass);
S
sneaxiy 已提交
369
USE_PASS(sequential_execution_pass);
370
USE_PASS(all_reduce_deps_pass);
371
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
372
USE_PASS(modify_op_lock_and_record_event_pass);
D
dzhwinter 已提交
373
USE_PASS(inplace_pass);
M
minqiyang 已提交
374
USE_PASS(lock_free_optimize_pass);
375
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
376
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
377 378
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
379
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
380
USE_PASS(fuse_all_reduce_op_pass);
381
USE_PASS(runtime_context_cache_pass);
Z
Zeng Jinle 已提交
382
USE_PASS(record_skip_memory_opt_vars_pass);
383 384 385
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif