Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f3463ecb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f3463ecb
编写于
2月 14, 2019
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine pg execution
上级
46a6cac9
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
309 addition
and
86 deletion
+309
-86
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+7
-3
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+32
-22
paddle/fluid/framework/details/multi_devices_graph_pass.h
paddle/fluid/framework/details/multi_devices_graph_pass.h
+11
-5
paddle/fluid/framework/details/multi_devices_helper.h
paddle/fluid/framework/details/multi_devices_helper.h
+9
-2
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+3
-0
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+64
-1
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+11
-0
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+2
-2
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+19
-7
paddle/fluid/framework/ir/graph_helper.h
paddle/fluid/framework/ir/graph_helper.h
+3
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+39
-42
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+2
-1
python/paddle/fluid/tests/unittests/test_parallel_executor_pg.py
...paddle/fluid/tests/unittests/test_parallel_executor_pg.py
+107
-0
未找到文件。
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
f3463ecb
...
...
@@ -35,8 +35,8 @@ static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
// Should fix the allreduce op order if scheduling
// them in multiple threads or processes to avoid hang.
return
(
!
strategy
.
enable_sequential_execution_
&&
strategy
.
num_trainers_
>
1
)
||
strategy
.
enable_parallel_graph_
;
strategy
.
num_trainers_
>
1
)
&&
!
strategy
.
enable_parallel_graph_
;
}
class
ParallelExecutorPassBuilder
:
public
ir
::
PassBuilder
{
...
...
@@ -106,7 +106,9 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
}
// Verify that the graph is correct for multi-device executor.
AppendPass
(
"multi_devices_check_pass"
);
auto
multi_devices_pass
=
AppendPass
(
"multi_devices_check_pass"
);
multi_devices_pass
->
Set
<
bool
>
(
kEnablePG
,
new
bool
(
strategy
.
enable_parallel_graph_
));
if
(
SeqOnlyAllReduceOps
(
strategy
))
{
AppendPass
(
"all_reduce_deps_pass"
);
...
...
@@ -180,6 +182,8 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
&
local_scopes
);
pass
->
Erase
(
kNRanks
);
pass
->
Set
<
size_t
>
(
kNRanks
,
new
size_t
(
nranks
));
pass
->
Erase
(
kEnablePG
);
pass
->
Set
<
bool
>
(
kEnablePG
,
new
bool
(
true
));
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform
::
NCCLContextMap
*
nctx
=
use_cuda
?
nccl_ctxs
:
nullptr
;
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
f3463ecb
...
...
@@ -36,11 +36,6 @@ namespace framework {
namespace
details
{
namespace
{
// TODO(panyx0718): Clean this up as well.
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef
std
::
vector
<
OpHandleBase
*>
GraphOps
;
const
char
kGraphOps
[]
=
"ops"
;
bool
OpHaveRole
(
const
ir
::
Node
&
node
,
const
framework
::
OpRole
&
role
)
{
return
boost
::
get
<
int
>
(
...
...
@@ -206,7 +201,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
auto
&
g_name
=
backward_vars
[
i
+
1
];
VLOG
(
10
)
<<
"Bcast "
<<
g_name
<<
" for parameter "
<<
p_name
;
InsertCollectiveOp
(
&
result
,
p_name
,
g_name
);
InsertCollectiveOp
(
&
result
,
node
,
p_name
,
g_name
);
}
}
catch
(
boost
::
bad_get
e
)
{
}
...
...
@@ -226,7 +221,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
* Only variables should be the leaves of graph.
*/
AddOutputToLeafOps
(
&
result
);
result
.
Erase
(
kGraphOps
);
//
result.Erase(kGraphOps);
return
graph
;
}
...
...
@@ -391,20 +386,34 @@ void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
}
void
MultiDevSSAGraphBuilderBase
::
CreateAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
{
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
og
)
const
{
OpHandleBase
*
op_handle
=
nullptr
;
auto
append_allreduce_op
=
[
&
](
std
::
vector
<
Scope
*>
&
scopes
,
std
::
vector
<
platform
::
Place
>
&
places
)
->
OpHandleBase
*
{
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
AllReduceOpHandle
(
result
->
CreateEmptyNode
(
"allreduce"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
,
places_
,
nccl_ctxs_
));
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
AllReduceOpHandle
(
result
->
CreateEmptyNode
(
"allreduce"
,
ir
::
Node
::
Type
::
kOperation
),
scopes
,
places
,
nccl_ctxs_
));
#else
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
AllReduceOpHandle
(
result
->
CreateEmptyNode
(
"allreduce"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
,
places_
));
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
AllReduceOpHandle
(
result
->
CreateEmptyNode
(
"allreduce"
,
ir
::
Node
::
Type
::
kOperation
),
scopes
,
places
));
#endif
auto
*
op_handle
=
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
();
return
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
();
};
if
(
!
strategy_
.
enable_parallel_graph_
)
op_handle
=
append_allreduce_op
(
local_scopes_
,
places_
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
auto
p
=
places_
[
i
];
std
::
vector
<
Scope
*>
ss
{
local_scopes_
[
i
]};
std
::
vector
<
platform
::
Place
>
ps
{
p
};
if
(
strategy_
.
enable_parallel_graph_
)
op_handle
=
append_allreduce_op
(
ss
,
ps
);
SetCommunicationContext
(
op_handle
,
p
);
auto
&
vars
=
result
->
Get
<
GraphVars
>
(
kGraphVars
)[
i
][
og
];
PADDLE_ENFORCE
(
!
vars
.
empty
());
...
...
@@ -501,13 +510,13 @@ bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
}
void
AllReduceSSAGraphBuilder
::
InsertCollectiveOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
{
if
(
IsSparseGradient
(
g_name
))
{
CreateReduceOp
(
result
,
g_name
,
0
);
CreateBroadcastOp
(
result
,
g_name
,
0
);
}
else
{
CreateAllReduceOp
(
result
,
g_name
);
CreateAllReduceOp
(
result
,
node
,
g_name
);
}
}
...
...
@@ -580,7 +589,7 @@ void ReduceSSAGraphBuilder::ResetState() const {
}
void
ReduceSSAGraphBuilder
::
InsertCollectiveOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
{
size_t
cur_device_id
=
GetAppropriateDeviceID
({
g_name
});
CreateReduceOp
(
result
,
g_name
,
cur_device_id
);
...
...
@@ -900,7 +909,7 @@ int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
return
op_dev_id
;
}
void
DistSSAGraphBuilder
::
InsertCollectiveOp
(
ir
::
Graph
*
result
,
void
DistSSAGraphBuilder
::
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
{
size_t
cur_device_id
=
0
;
...
...
@@ -915,7 +924,7 @@ void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
CreateReduceOp
(
result
,
g_name
,
0
);
CreateBroadcastOp
(
result
,
g_name
,
0
);
}
else
{
CreateAllReduceOp
(
result
,
g_name
);
CreateAllReduceOp
(
result
,
node
,
g_name
);
}
break
;
default:
...
...
@@ -966,7 +975,8 @@ static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
.RequirePassAttr(paddle::framework::details::kPlaces) \
.RequirePassAttr(paddle::framework::details::kLocalScopes) \
.RequirePassAttr(paddle::framework::details::kStrategy) \
.RequirePassAttr(paddle::framework::details::kNRanks)
.RequirePassAttr(paddle::framework::details::kNRanks) \
.RequirePassAttr(paddle::framework::details::kEnablePG)
REGISTER_MULTI_DEVICES_PASS
(
reduce_mode_multi_devices_pass
,
paddle
::
framework
::
details
::
ReduceSSAGraphBuilder
);
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.h
浏览文件 @
f3463ecb
...
...
@@ -36,6 +36,7 @@ constexpr char kPlaces[] = "places";
constexpr
char
kLocalScopes
[]
=
"local_scopes"
;
constexpr
char
kStrategy
[]
=
"strategy"
;
constexpr
char
kNRanks
[]
=
"nranks"
;
constexpr
char
kEnablePG
[]
=
"enable_pg"
;
class
MultiDevSSAGraphBuilderBase
:
public
ir
::
Pass
{
protected:
...
...
@@ -46,7 +47,8 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass {
virtual
std
::
vector
<
ir
::
Node
*>
SortOperations
(
const
ir
::
Graph
&
graph
)
const
;
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
=
0
;
virtual
bool
DealWithSpecialOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
=
0
;
...
...
@@ -75,7 +77,8 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass {
bool
IsSparseGradient
(
const
std
::
string
&
og
)
const
;
void
CreateAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
;
void
CreateAllReduceOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
og
)
const
;
void
CreateBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
;
...
...
@@ -106,7 +109,8 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass {
class
AllReduceSSAGraphBuilder
:
public
MultiDevSSAGraphBuilderBase
{
protected:
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
;
virtual
bool
DealWithSpecialOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
...
...
@@ -135,7 +139,8 @@ class ReduceSSAGraphBuilder : public BalanceVarSSAGraphBuilder {
protected:
virtual
void
Init
()
const
;
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
;
virtual
bool
DealWithSpecialOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
...
...
@@ -164,7 +169,8 @@ class DistSSAGraphBuilder : public BalanceVarSSAGraphBuilder {
virtual
void
InsertPostprocessOps
(
ir
::
Graph
*
result
)
const
;
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
virtual
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
;
virtual
void
ResetState
()
const
;
...
...
paddle/fluid/framework/details/multi_devices_helper.h
浏览文件 @
f3463ecb
...
...
@@ -36,13 +36,20 @@ namespace details {
// map from variable name to variables. The variables, who have the same name,
// will have a differsent version. The offset in the
// `std::vector<VarHandle*>` is the version of varaibles.
typedef
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandle
*>>>
typedef
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandle
*>>>
GraphVars
;
const
char
kGraphVars
[]
=
"vars"
;
// aux variables to represent dependency. Useful to resolve data hazard.
typedef
std
::
unordered_set
<
VarHandleBase
*>
GraphDepVars
;
typedef
std
::
unordered_set
<
VarHandleBase
*>
GraphDepVars
;
const
char
kGraphDepVars
[]
=
"dep_vars"
;
// TODO(panyx0718): Clean this up as well.
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef
std
::
vector
<
OpHandleBase
*>
GraphOps
;
const
char
kGraphOps
[]
=
"ops"
;
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
f3463ecb
...
...
@@ -70,6 +70,9 @@ class OpHandleBase {
auto
it
=
dev_ctxes_
.
find
(
place
);
return
it
!=
dev_ctxes_
.
end
()
?
it
->
second
:
nullptr
;
}
const
std
::
map
<
platform
::
Place
,
platform
::
DeviceContext
*>
&
DeviceContext
()
{
return
dev_ctxes_
;
}
void
SetDeviceContext
(
platform
::
Place
place
,
platform
::
DeviceContext
*
ctx_
)
{
dev_ctxes_
[
place
]
=
ctx_
;
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
浏览文件 @
f3463ecb
...
...
@@ -13,11 +13,74 @@
// limitations under the License.
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
SeparateMultiDevicesGraph
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
graphs
.
reserve
(
places
.
size
());
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
ProgramDesc
empty
;
graphs
.
emplace_back
(
std
::
unique_ptr
<
ir
::
Graph
>
(
new
ir
::
Graph
(
empty
)));
auto
&
g
=
graphs
.
back
();
g
->
Set
(
kGraphVars
,
new
GraphVars
(
1UL
));
g
->
Set
(
kGraphDepVars
,
new
GraphDepVars
);
g
->
Set
(
kGraphOps
,
new
GraphOps
);
}
for
(
auto
&
op
:
graph
->
Get
<
GraphOps
>
(
kGraphOps
))
{
auto
&
dev_ctx
=
op
->
DeviceContext
();
auto
&
p
=
dev_ctx
.
begin
()
->
first
;
#ifdef PADDLE_WITH_CUDA
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
dev_ops
=
graphs
[
dev_id
]
->
Get
<
GraphOps
>
(
kGraphOps
);
auto
&
dev_dummys
=
graphs
[
dev_id
]
->
Get
<
GraphDepVars
>
(
kGraphDepVars
);
dev_ops
.
emplace_back
(
op
);
graphs
[
dev_id
]
->
AddNode
(
graph
->
ReleaseNode
(
op
->
Node
()).
release
());
for
(
auto
&
var
:
op
->
Inputs
())
{
auto
dummy_ptr
=
dynamic_cast
<
DummyVarHandle
*>
(
var
);
if
(
dummy_ptr
)
{
dev_dummys
.
insert
(
var
);
if
(
graph
->
Nodes
().
count
(
var
->
Node
()))
graphs
[
dev_id
]
->
AddNode
(
graph
->
ReleaseNode
(
var
->
Node
()).
release
());
}
}
for
(
auto
&
var
:
op
->
Outputs
())
{
auto
dummy_ptr
=
dynamic_cast
<
DummyVarHandle
*>
(
var
);
if
(
dummy_ptr
)
{
dev_dummys
.
insert
(
var
);
if
(
graph
->
Nodes
().
count
(
var
->
Node
()))
graphs
[
dev_id
]
->
AddNode
(
graph
->
ReleaseNode
(
var
->
Node
()).
release
());
}
}
#else
PADDLE_THROW
(
"Parallel Graph Execution only support CUDAPlace."
);
#endif
}
for
(
size_t
dev_id
=
0
;
dev_id
<
places
.
size
();
++
dev_id
)
{
auto
&
dev_vars
=
graphs
[
dev_id
]
->
Get
<
GraphVars
>
(
kGraphVars
)[
0
];
auto
&
origin_vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
)[
dev_id
];
for
(
auto
&
name_pair
:
origin_vars
)
{
dev_vars
.
emplace
(
name_pair
.
first
,
name_pair
.
second
);
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
if
(
graph
->
Nodes
().
count
(
version_pair
->
Node
()))
{
graphs
[
dev_id
]
->
AddNode
(
graph
->
ReleaseNode
(
version_pair
->
Node
()).
release
());
}
}
}
}
return
graphs
;
}
ParallelSSAGraphExecutor
::
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
...
...
@@ -37,7 +100,7 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
<<
" to run the operators of the graph on each device."
;
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
executors_
.
emplace_back
(
new
details
::
ThreadedSSAGraphExecutor
(
strategy_
,
{
local_scopes_
[
i
]},
{
places_
[
i
]},
std
::
move
(
graphs_
[
i
]
)));
strategy_
,
local_scopes_
,
{
places_
[
i
]},
std
::
move
(
graphs_
.
at
(
i
)
)));
}
}
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
浏览文件 @
f3463ecb
...
...
@@ -14,16 +14,24 @@
#pragma once
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
SeparateMultiDevicesGraph
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
graph
);
class
ParallelSSAGraphExecutor
:
public
SSAGraphExecutor
{
public:
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
...
...
@@ -31,11 +39,14 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
&&
graphs
);
~
ParallelSSAGraphExecutor
()
final
=
default
;
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graphs_
[
0
];
}
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
override
;
private:
// std::vector<std::unique_ptr<ir::Graph>> SeparateMultiDevicesGraph();
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
{
nullptr
};
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
f3463ecb
...
...
@@ -56,10 +56,10 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
}
}
}
for
(
auto
&
var
:
graph_
->
Get
<
details
::
GraphDepVars
>
(
details
::
kGraphDepVars
))
{
InsertPendingVar
(
&
pending_vars
,
ready_vars
.
get
(),
var
);
}
for
(
auto
&
op
:
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph_
))
{
if
(
op
->
Inputs
().
empty
())
{
// Special case, Op has no input.
ready_ops
.
insert
(
op
);
...
...
@@ -219,7 +219,7 @@ void ThreadedSSAGraphExecutor::RunOp(
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
running_ops_
--
;
ready_var_q
->
Extend
(
op
->
Outputs
());
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
"Signal posted"
;
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
"
Signal posted"
;
}
catch
(...)
{
exception_holder_
.
Catch
(
std
::
current_exception
());
}
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
f3463ecb
...
...
@@ -167,6 +167,14 @@ class Graph {
return
ret
;
}
std
::
unique_ptr
<
ir
::
Node
>
ReleaseNode
(
ir
::
Node
*
node
)
{
std
::
unique_ptr
<
ir
::
Node
>
ret
;
ret
.
reset
(
nodes_
.
at
(
node
).
release
());
nodes_
.
erase
(
node
);
node_set_
.
erase
(
node
);
return
ret
;
}
void
RemoveNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
!=
node_set_
.
end
());
node_set_
.
erase
(
node
);
...
...
@@ -183,13 +191,6 @@ class Graph {
return
nullptr
;
}
void
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
);
private:
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
InitFromProgram
(
const
ProgramDesc
&
program
);
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
...
...
@@ -198,6 +199,17 @@ class Graph {
return
node
;
}
bool
ContainNode
(
ir
::
Node
*
node
)
{
return
node_set_
.
find
(
node
)
!=
node_set_
.
end
();
}
void
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
);
private:
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
InitFromProgram
(
const
ProgramDesc
&
program
);
// NOTE: program_ shouldn't be exposed to user.
const
ProgramDesc
program_
;
std
::
map
<
std
::
string
,
boost
::
any
>
attrs_
;
...
...
paddle/fluid/framework/ir/graph_helper.h
浏览文件 @
f3463ecb
...
...
@@ -59,7 +59,9 @@ template <typename T>
std
::
vector
<
T
*>
FilterByNodeWrapper
(
const
Graph
&
graph
)
{
std
::
vector
<
T
*>
ret
;
for
(
ir
::
Node
*
n
:
graph
.
Nodes
())
{
if
(
n
->
IsWrappedBy
<
T
>
())
ret
.
push_back
(
&
n
->
Wrapper
<
T
>
());
if
(
n
->
IsWrappedBy
<
T
>
())
{
ret
.
push_back
(
&
n
->
Wrapper
<
T
>
());
}
}
return
ret
;
}
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
f3463ecb
...
...
@@ -26,6 +26,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -201,7 +202,6 @@ ParallelExecutor::ParallelExecutor(
member_
->
use_all_reduce_
=
build_strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
;
member_
->
nranks_
=
build_strategy
.
num_trainers_
*
places
.
size
();
if
(
!
member_
->
use_all_reduce_
)
{
PADDLE_ENFORCE
(
places
.
size
()
>
1
,
"If you set build_strategy.reduce with 'Reduce',"
...
...
@@ -229,9 +229,10 @@ ParallelExecutor::ParallelExecutor(
// choice the execution strategy.
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
main_program
,
exec_strategy
,
build_strategy
);
VLOG
(
1
)
<<
"Enable ParallelGraph Execution: "
<<
build_strategy
.
enable_parallel_graph_
;
if
(
build_strategy
.
enable_parallel_graph_
)
VLOG
(
0
)
<<
"The Executor would execute the graph by ParallelGraph "
"Execution which can get better performance,"
<<
"you can force it off by env FLAGS_enable_parallel_graph=0"
;
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
...
...
@@ -265,58 +266,42 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
std
::
unique_ptr
<
ir
::
Graph
>
graph
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if
(
build_strategy
.
enable_parallel_graph_
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
{
member_
->
places_
[
i
]},
loss_var_name
,
{
member_
->
local_scopes_
[
i
]},
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
}
else
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
graphs
.
push_back
(
std
::
move
(
graph
));
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
for
(
size_t
i
=
0
;
i
<
graphs
.
size
();
++
i
)
{
graphs
[
i
]
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graphs
[
i
]),
static_cast
<
size_t
>
(
max_memory_size
));
}
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
));
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
&
graph
:
graphs
)
{
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
}
// If the loss_var_name is given, the number of graph should be only one.
if
(
loss_var_name
.
size
())
{
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
s
[
0
]
);
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
);
if
(
graph_num
>
1
)
{
LOG
(
WARNING
)
<<
"The number of graph should be only one, "
"but the current graph has "
<<
ir
::
GraphNum
(
*
graph
s
[
0
]
)
<<
ir
::
GraphNum
(
*
graph
)
<<
" sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
...
...
@@ -325,18 +310,30 @@ ParallelExecutor::ParallelExecutor(
}
if
(
build_strategy
.
enable_parallel_graph_
)
{
auto
parallel_graph
=
details
::
SeparateMultiDevicesGraph
(
member_
->
places_
,
std
::
move
(
graph
));
auto
seq_allreduce_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"all_reduce_deps_pass"
);
seq_allreduce_pass
->
Erase
(
details
::
kAllOpDescs
);
seq_allreduce_pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
details
::
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
for
(
size_t
i
=
0
;
i
<
parallel_graph
.
size
();
++
i
)
{
parallel_graph
[
i
]
=
seq_allreduce_pass
->
Apply
(
std
::
move
(
parallel_graph
[
i
]));
}
member_
->
executor_
.
reset
(
new
details
::
ParallelSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graphs
)));
std
::
move
(
parallel_graph
)));
}
else
{
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
s
[
0
]
)));
std
::
move
(
graph
)));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
s
[
0
]
)));
std
::
move
(
graph
)));
}
}
...
...
@@ -487,8 +484,8 @@ bool ParallelExecutor::EnableParallelGraphExecution(
}
}
if
(
!
member_
->
use_all_reduce_
||
!
member_
->
use_cuda_
)
enable_parallel_graph
=
false
;
//
if (!member_->use_all_reduce_ || !member_->use_cuda_)
if
(
!
member_
->
use_all_reduce_
)
enable_parallel_graph
=
false
;
if
(
build_strategy
.
enable_sequential_execution_
||
exec_strategy
.
type_
==
ExecutionStrategy
::
ExecutorType
::
kExperimental
)
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
f3463ecb
...
...
@@ -72,6 +72,7 @@ class TestParallelExecutorBase(unittest.TestCase):
exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
exec_strategy
.
num_threads
=
1
if
use_fast_executor
:
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
...
...
@@ -99,7 +100,7 @@ class TestParallelExecutorBase(unittest.TestCase):
first_loss
,
=
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
for
i
in
range
(
iter
):
for
_
in
range
(
iter
):
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[])
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_pg.py
0 → 100644
浏览文件 @
f3463ecb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
os
os
.
environ
[
'FLAGS_enable_parallel_graph'
]
=
str
(
1
)
import
paddle.fluid.core
as
core
import
os
import
paddle.fluid
as
fluid
from
parallel_executor_test_base
import
TestParallelExecutorBase
def
simple_fc_net
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestMNIST
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_init_data
(
self
):
np
.
random
.
seed
(
5
)
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
()
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
)
def
test_simple_fc
(
self
):
# use_cuda
self
.
check_simple_fc_convergence
(
True
)
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
()
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
False
)
parallel_first_loss
,
parallel_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
True
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_first_loss
),
single_first_loss
,
delta
=
1e-6
,
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_last_loss
),
single_last_loss
,
delta
=
1e-6
)
def
test_simple_fc_parallel_accuracy
(
self
):
self
.
check_simple_fc_parallel_accuracy
(
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录