build_strategy.cc 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18 19
#include <glog/logging.h>
#include <memory>

D
dzhwinter 已提交
20
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
21
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
22
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
25
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/framework/ir/graph_helper.h"
27 28 29 30 31 32
#include "paddle/fluid/framework/ir/graph_viz_pass.h"

namespace paddle {
namespace framework {
namespace details {

33
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
34 35
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
36 37 38
  return (!strategy.enable_sequential_execution_ &&
          strategy.num_trainers_ > 1) ||
         strategy.enable_parallel_graph_;
39 40
}

41 42 43 44
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
D
dzhwinter 已提交
45 46 47
    if (strategy_.enable_inplace_) {
      AppendPass("inplace_pass");
    }
S
sneaxiy 已提交
48 49 50 51
    if (strategy_.enable_sequential_execution_) {
      AppendPass("sequential_execution_pass");
    }

X
Xin Pan 已提交
52
    // Add a graph viz pass to record a graph.
53 54 55 56 57 58 59
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass("graph_viz_pass");
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
      viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    }

X
Xin Pan 已提交
60
    // Add op fusion.
61 62 63
    if (strategy.fuse_relu_depthwise_conv_) {
      AppendPass("fuse_relu_depthwise_conv_pass");
    }
64
    if (strategy.fuse_elewise_add_act_ops_) {
X
Xin Pan 已提交
65
      auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
X
Xin Pan 已提交
66
      // Add a graph viz pass to record a graph.
67
      if (!strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
68
        auto viz_pass = AppendPass("graph_viz_pass");
69 70
        const std::string graph_path = string::Sprintf(
            "%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
X
Xin Pan 已提交
71 72
        viz_pass->Set<std::string>("graph_viz_path",
                                   new std::string(graph_path));
73 74 75
      }
    }

76 77 78 79
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE(strategy_.trainer_id_ >= 0, "trainer_id_ >= 0");
80
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
81 82 83 84 85 86
      PADDLE_ENFORCE((unsigned)(strategy_.trainer_id_) <
                         strategy_.trainers_endpoints_.size(),
                     "trainer_id_ < endpoints_ size");
    }
    VLOG(1) << "CollectiveContext:" << context->String();

D
dzhwinter 已提交
87 88 89 90 91 92
    // NOTE(dzh): memory optimize should be a runtime pass.
    // However, after multi_devices_pass, VarHandle, OpHandle is
    // the de-fact IR, any reuse on Graph is meaningless.
    // A side-effect of that, memory optimize cannot forsee the fetched vars
    // , so fetchlist should be set persistable before call the Run interface.
    if (strategy.memory_optimize_) {
D
dzhwinter 已提交
93
      auto memory_optimize_pass = AppendPass("memory_optimize_pass");
D
dzhwinter 已提交
94
    }
95 96

    AppendMultiDevPass(strategy);
97

X
Xin Pan 已提交
98
    // Add a graph print pass to record a graph with device info.
99 100
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
D
dzhwinter 已提交
101 102 103 104 105
      const std::string graph_path =
          string::Sprintf("%s%s", strategy_.debug_graphviz_path_.c_str(),
                          "_multi_devices_graph");
      multi_devices_print_pass->Set<std::string>(kGraphvizPath,
                                                 new std::string(graph_path));
106 107 108 109 110 111
      multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
          "graph_printer", new details::GraphvizSSAGraphPrinter);
    }

    // Verify that the graph is correct for multi-device executor.
    AppendPass("multi_devices_check_pass");
S
sneaxiy 已提交
112

113 114 115 116
    if (SeqOnlyAllReduceOps(strategy)) {
      AppendPass("all_reduce_deps_pass");
    }

S
sneaxiy 已提交
117 118 119
    if (strategy_.remove_unnecessary_lock_) {
      AppendPass("modify_op_lock_and_record_event_pass");
    }
120 121
  }

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  // Convert graph to run on multi-devices.
  void AppendMultiDevPass(const BuildStrategy &strategy) {
    ir::Pass *multi_devices_pass;
    if (strategy_.is_distribution_) {
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
      if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
        multi_devices_pass =
            AppendPass("allreduce_mode_multi_devices_pass").get();
      } else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
        multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get();
      } else {
        PADDLE_THROW("Unknown reduce strategy.");
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

141 142 143 144
 private:
  BuildStrategy strategy_;
};

145
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
146 147
    bool finalize_strategy) const {
  if (is_finalized_) {
148 149
    return pass_builder_;
  }
150
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
151 152
  if (finalize_strategy) {
    is_finalized_ = true;
153
  }
X
fix  
Xin Pan 已提交
154
  return pass_builder_;
155 156
}

157 158 159 160
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
  return framework::details::MultiDevSSAGraphBuilder().count(pass_name) > 0;
}

161 162
std::unique_ptr<ir::Graph> BuildStrategy::Apply(
    const ProgramDesc &main_program, const std::vector<platform::Place> &places,
163
    const std::string &loss_var_name, const std::vector<Scope *> &local_scopes,
164
    const size_t &nranks,
P
peizhilin 已提交
165
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
166 167 168 169
    const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else
    const bool use_cuda) const {
#endif
170 171
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
172 173 174

  std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
175 176 177 178 179 180 181
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLossVarName);
      pass->SetNotOwned<const std::string>(kLossVarName, &loss_var_name);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
182
                                                    &local_scopes);
183 184
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
185

P
peizhilin 已提交
186
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
fix  
Xin Pan 已提交
187 188 189
      platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase("nccl_ctxs");
      pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
190
#endif
D
dzhwinter 已提交
191
    } else if (pass->Type() == "memory_optimize_pass") {
D
dzhwinter 已提交
192 193 194 195 196 197 198 199 200 201
      const std::vector<OpDesc *> *all_op_descs =
          new std::vector<OpDesc *>(main_program.Block(0).AllOps());
      graph->Set<const std::vector<OpDesc *>>(kAllOpDescs,
                                              all_op_descs);  // take ownership
      graph->Set<GraphNodePool>(kGraphNodePool,
                                new GraphNodePool);  // take ownership

      pass->Erase(kAllOpDescs);
      pass->SetNotOwned<const std::vector<OpDesc *>>(kAllOpDescs, all_op_descs);

S
sneaxiy 已提交
202
    } else if (pass->Type() == "sequential_execution_pass") {
203 204
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
205 206 207 208 209 210

      pass->Erase(kAllOpDescs);
      pass->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
    } else if (pass->Type() == "all_reduce_deps_pass") {
211 212
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
213

S
sneaxiy 已提交
214 215 216 217
      pass->Erase(kAllOpDescs);
      pass->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
D
dzhwinter 已提交
218 219 220 221 222 223 224
    } else if (pass->Type() == "inplace_pass") {
      if (graph->Has(kAllOpDescs)) {
        graph->Erase(kAllOpDescs);
      }
      graph->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
225 226 227 228 229 230
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
231 232 233
    }
    graph = pass->Apply(std::move(graph));
  }
234 235
  return graph;
}
D
dzhwinter 已提交
236

237 238 239 240
}  // namespace details
}  // namespace framework
}  // namespace paddle

241
USE_PASS(fuse_relu_depthwise_conv_pass);
242 243
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
244
USE_PASS(multi_batch_merge_pass);
245 246 247
USE_PASS(reduce_mode_multi_devices_pass);
USE_PASS(allreduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass);
248 249
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
D
dzhwinter 已提交
250
USE_PASS(memory_optimize_pass);
S
sneaxiy 已提交
251
USE_PASS(sequential_execution_pass);
252
USE_PASS(all_reduce_deps_pass);
S
sneaxiy 已提交
253
USE_PASS(modify_op_lock_and_record_event_pass);
D
dzhwinter 已提交
254
USE_PASS(inplace_pass);
M
minqiyang 已提交
255
USE_PASS(lock_free_optimize_pass);