build_strategy.cc 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17
#include <glog/logging.h>
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_printer.h"
20
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
21

22 23
DECLARE_bool(use_mkldnn);

24 25 26 27
namespace paddle {
namespace framework {
namespace details {

28
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
29 30
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
31
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
32
  // don't need to append it here.
Y
Yancey1989 已提交
33
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
34 35
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
36 37
}

C
chengduo 已提交
38 39 40 41 42 43
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

44 45 46 47
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
48
    ResolveOptionConfliction();
C
chengduo 已提交
49

C
chengduo 已提交
50 51 52 53 54 55 56
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
57

58
    AppendAddReaderDependencyPass();
C
chengduo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
72

C
chengduo 已提交
73 74
    SetCollectiveContext();
  }
75

C
chengduo 已提交
76 77 78
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
79
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
80
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
81 82
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
83
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
84 85 86
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
87
    }
C
chengduo 已提交
88
    if (strategy_.is_distribution_) {
C
chengduo 已提交
89
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
90 91 92
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
93
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
94 95 96
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
97
    }
C
chengduo 已提交
98
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
99
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
100 101 102
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
103
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
104 105
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
106
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
107
    }
C
chengduo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
121 122
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
123 124 125 126
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
127 128
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
129
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
130
    }
C
chengduo 已提交
131
  }
132

C
chengduo 已提交
133 134 135 136 137 138
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
139

C
chengduo 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
155

C
chengduo 已提交
156 157 158
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
159
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
Z
Zhang Ting 已提交
160
    AppendPassWithCheck(strategy_.fuse_bn_add_act_ops_, "fuse_bn_add_act_pass");
161 162
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    !defined(_WIN32) && !defined(__APPLE__)
163
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
164 165 166
#else
    LOG(WARNING) << "fusion_group is not enabled for Windows/MacOS now, and "
                    "only effective when running with CUDA GPU.";
167
#endif
C
chengduo 已提交
168 169
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
170
    // for single card training, fuse_all_reduce_ops is unnecessary.
171
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
172 173
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
174
    // Fuse all the optimization operators.
C
chengduo 已提交
175 176 177
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
178
    if (strategy_.fuse_all_optimizer_ops_ == true) {
179 180 181
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
182
    }
C
chengduo 已提交
183
  }
C
chengduo 已提交
184

C
chengduo 已提交
185 186 187 188
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
189 190 191 192 193 194 195
    PADDLE_ENFORCE_GE(
        strategy_.trainer_id_, 0,
        platform::errors::InvalidArgument(
            "The trainer_id_ of strategy_ must be greater than or equal to 0, "
            "but received strategy_.trainer_id_ = %d.",
            strategy_.trainer_id_));

C
chengduo 已提交
196
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
197 198 199 200 201 202 203 204 205 206
      PADDLE_ENFORCE_LT(
          static_cast<size_t>(strategy_.trainer_id_),
          strategy_.trainers_endpoints_.size(),
          platform::errors::InvalidArgument(
              "The trainer_id_ of strategy_ must be less than the "
              "size of vector strategy_.trainers_endpoints_, "
              "but received strategy_.trainer_id_ = %d, "
              "the size of strategy_.trainers_endpoints_ is %d.",
              static_cast<size_t>(strategy_.trainer_id_),
              strategy_.trainers_endpoints_.size()));
S
sneaxiy 已提交
207
    }
C
chengduo 已提交
208
    VLOG(1) << "CollectiveContext:" << context->String();
209 210
  }

211 212 213 214
  void AppendAddReaderDependencyPass() {
    AppendPass("add_reader_dependency_pass");
  }

215
  // Convert graph to run on multi-devices.
C
chengduo 已提交
216
  void AppendMultiDevPass() {
C
chengduo 已提交
217
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
218 219 220
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
221 222
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
223 224 225 226 227 228 229 230 231 232
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
233 234
          PADDLE_THROW(
              platform::errors::Unimplemented("Unknown reduce strategy."));
235 236 237 238 239 240
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
241 242 243 244 245 246 247 248 249 250 251
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
252 253 254 255 256
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
276 277 278 279 280
    PADDLE_ENFORCE_NE(FLAGS_use_mkldnn, true,
                      platform::errors::PreconditionNotMet(
                          "FLAGS_use_mkldnn has been set to True, but "
                          "PaddlePaddle is compiled without MKLDNN. "
                          "Please compile PaddlePaddle with MKLDNN first."));
C
chengduo 已提交
281 282 283
#endif
  }

284 285 286 287
 private:
  BuildStrategy strategy_;
};

288
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
289 290
    bool finalize_strategy) const {
  if (is_finalized_) {
291 292
    return pass_builder_;
  }
293
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
294 295
  if (finalize_strategy) {
    is_finalized_ = true;
296
  }
X
fix  
Xin Pan 已提交
297
  return pass_builder_;
298 299
}

300
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
301
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
302 303
}

304 305 306 307 308
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
309
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
310
                                DeviceType use_device,
311
                                platform::NCCLCommunicator *nccl_ctxs) const {
312 313 314
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
                                DeviceType use_device,
                                platform::BKCLCommunicator *bkcl_ctxs) const {
315
#else
316
                                DeviceType use_device) const {
317
#endif
C
chengduo 已提交
318
  VLOG(1) << "apply all passes";
319 320
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
321 322

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
323
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
324 325 326
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
327 328
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
329 330
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
331
                                                    &local_scopes);
332 333
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
334

335
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
336 337
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
338
      pass->Erase(kNCCLCtxs);
339
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
340 341 342 343 344 345
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      // ToDo: more check
      platform::BKCLCommunicator *bkcl_ctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, bkcl_ctx);
346
#endif
C
chengduo 已提交
347
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
348 349
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
350 351 352 353 354
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
355
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
356 357
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
358 359 360 361 362
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
363 364 365 366 367 368 369 370 371 372 373
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
374
#endif
375
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
376 377
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
378
    } else if (pass->Type() == "sequential_execution_pass") {
379 380
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
381
    } else if (pass->Type() == "all_reduce_deps_pass") {
382
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
383 384
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
385
      pass->Erase(kNCCLCtxs);
386
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
387 388 389
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
390 391 392 393 394 395 396 397 398 399 400
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
401
#endif
402 403
      VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
              << ", num_trainers:" << num_trainers_;
404
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
405
      if (use_device != p::kCUDA) {
406 407 408 409
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
410
    } else if (pass->Type() == "fusion_group_pass") {
411 412
      pass->Set<bool>("use_gpu", new bool((use_device == p::kCUDA)));
      if (use_device != p::kCUDA) {
413 414 415
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
416
    } else if (pass->Type() == "fuse_bn_act_pass") {
417
      if (use_device != p::kCUDA) {
Z
Zhen Wang 已提交
418 419 420 421
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
Z
Zhang Ting 已提交
422
    } else if (pass->Type() == "fuse_bn_add_act_pass") {
423
      if (use_device != p::kCUDA) {
Z
Zhang Ting 已提交
424 425 426 427
        LOG(WARNING) << "fuse_bn_add_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
428 429 430
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
431
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
432
      if (use_device != p::kCUDA) {
433 434 435 436
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
437
    }
C
chengduo 已提交
438
    VLOG(1) << "Start Apply Pass " << pass->Type();
439
    graph = pass->Apply(graph);
C
chengduo 已提交
440
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
441
  }
C
chengduo 已提交
442
  VLOG(1) << "All Passes Applied";
443 444
  return graph;
}
D
dzhwinter 已提交
445

446 447 448 449
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
450
USE_PASS(sync_batch_norm_pass);
451
USE_PASS(fuse_relu_depthwise_conv_pass);
452
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
453
USE_PASS(fuse_bn_act_pass);
Z
Zhang Ting 已提交
454
USE_PASS(fuse_bn_add_act_pass);
455
USE_PASS(graph_viz_pass);
456
USE_PASS(multi_batch_merge_pass);
457
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
458
USE_PASS(all_reduce_mode_multi_devices_pass);
459
USE_PASS(dist_multi_devices_pass);
460 461
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
462
USE_PASS(sequential_execution_pass);
463
USE_PASS(all_reduce_deps_pass);
464
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
465
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
466
USE_PASS(lock_free_optimize_pass);
467
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
468
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
469 470
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
471
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
472
USE_PASS(fuse_all_reduce_op_pass);
473
USE_PASS(runtime_context_cache_pass);
474
USE_PASS(add_reader_dependency_pass);
475 476 477
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
478 479
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    !defined(_WIN32) && !defined(__APPLE__)
480 481
USE_PASS(fusion_group_pass);
#endif