build_strategy.cc 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29
DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
31

32 33 34 35
namespace paddle {
namespace framework {
namespace details {

36
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
37 38
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
39
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
40
  // don't need to append it here.
Y
Yancey1989 已提交
41
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
42 43
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
44 45
}

46 47 48 49
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
50
    ResolveOptionConfliction();
C
chengduo 已提交
51

C
chengduo 已提交
52 53 54 55 56
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

57 58
    AppendPassToUseNgraph("ngraph_subgraph_pass");

C
chengduo 已提交
59 60
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
61

C
chengduo 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
75

C
chengduo 已提交
76 77
    SetCollectiveContext();
  }
78

C
chengduo 已提交
79 80 81 82
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
83
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
84 85
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
86 87 88 89
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
90
    }
C
chengduo 已提交
91 92 93 94 95
    if (strategy_.is_distribution_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
96 97 98 99
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
100
    }
C
chengduo 已提交
101 102 103 104 105 106 107 108
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "fuse_all_optimizer_ops only work in Reducer mode.";
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
109
    }
110 111 112 113 114 115
    if (strategy_.async_mode_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
    }
C
chengduo 已提交
116
  }
117

C
chengduo 已提交
118 119 120 121 122 123
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
124

C
chengduo 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
140

C
chengduo 已提交
141 142 143 144 145
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
146
    // for single card training, fuse_all_reduce_ops is unnecessary.
147
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
148 149
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
150
    // Fuse all the optimization operators.
C
chengduo 已提交
151 152 153
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
154
    if (strategy_.fuse_all_optimizer_ops_) {
155 156 157
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
158
    }
C
chengduo 已提交
159
  }
C
chengduo 已提交
160

C
chengduo 已提交
161 162 163 164 165 166 167 168 169
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
170
    }
C
chengduo 已提交
171
    VLOG(1) << "CollectiveContext:" << context->String();
172 173
  }

174
  // Convert graph to run on multi-devices.
C
chengduo 已提交
175
  void AppendMultiDevPass() {
C
chengduo 已提交
176
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
177 178 179
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
180 181
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
182 183 184 185 186 187 188 189 190 191 192
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
193 194 195 196 197 198
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
                      "Please compile with NGRAPH first to use NGRAPH");
#endif
  }

250 251 252 253
 private:
  BuildStrategy strategy_;
};

254
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
255 256
    bool finalize_strategy) const {
  if (is_finalized_) {
257 258
    return pass_builder_;
  }
259
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
260 261
  if (finalize_strategy) {
    is_finalized_ = true;
262
  }
X
fix  
Xin Pan 已提交
263
  return pass_builder_;
264 265
}

266
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
267
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
268 269
}

270 271 272 273 274
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
P
peizhilin 已提交
275
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
276 277
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
278
#else
279
                                const bool use_cuda) const {
280
#endif
C
chengduo 已提交
281
  VLOG(1) << "apply all passes";
282 283
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
284 285

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
286
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
287 288 289
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
290 291
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
292 293
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
294
                                                    &local_scopes);
295 296
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
297

P
peizhilin 已提交
298
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
299
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
300
      pass->Erase(kNCCLCtxs);
301
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
302
#endif
C
chengduo 已提交
303
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
304 305
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
306 307 308 309 310 311
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
312 313 314 315 316 317
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
318
#endif
319
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
320 321
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
322
    } else if (pass->Type() == "sequential_execution_pass") {
323 324
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
325
    } else if (pass->Type() == "all_reduce_deps_pass") {
326
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
327
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
328
      pass->Erase(kNCCLCtxs);
329
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
330 331 332 333
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
334 335
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
336 337 338 339 340 341
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
342 343 344
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
345 346 347 348 349 350
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
351
    }
C
chengduo 已提交
352
    VLOG(1) << "Start Apply Pass " << pass->Type();
353
    graph = pass->Apply(graph);
C
chengduo 已提交
354
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
355
  }
C
chengduo 已提交
356
  VLOG(1) << "All Passes Applied";
357 358
  return graph;
}
D
dzhwinter 已提交
359

360 361 362 363
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
364
USE_PASS(sync_batch_norm_pass);
365
USE_PASS(fuse_relu_depthwise_conv_pass);
366 367
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
368
USE_PASS(multi_batch_merge_pass);
369
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
370
USE_PASS(all_reduce_mode_multi_devices_pass);
371
USE_PASS(dist_multi_devices_pass);
372 373
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
374
USE_PASS(sequential_execution_pass);
375
USE_PASS(all_reduce_deps_pass);
376
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
377
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
378
USE_PASS(lock_free_optimize_pass);
379
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
380
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
381 382
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
383
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
384
USE_PASS(fuse_all_reduce_op_pass);
385
USE_PASS(runtime_context_cache_pass);
386 387 388
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
389 390 391
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif