build_strategy.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29 30
DECLARE_bool(use_mkldnn);

31 32 33 34
namespace paddle {
namespace framework {
namespace details {

35
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
36 37
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
38
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
39
  // don't need to append it here.
Y
Yancey1989 已提交
40
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
41 42
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
43 44
}

45 46 47 48
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
49
    ResolveOptionConfliction();
C
chengduo 已提交
50

C
chengduo 已提交
51 52 53 54 55 56 57
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
58

C
chengduo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
72

C
chengduo 已提交
73 74
    SetCollectiveContext();
  }
75

C
chengduo 已提交
76 77 78 79 80 81 82
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops doesn't works under "
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
S
sneaxiy 已提交
83
    }
C
chengduo 已提交
84 85 86 87 88
    if (strategy_.is_distribution_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
Q
qingqing01 已提交
89
    }
C
chengduo 已提交
90 91 92 93 94 95 96 97
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "fuse_all_optimizer_ops only work in Reducer mode.";
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
98
    }
C
chengduo 已提交
99
  }
100

C
chengduo 已提交
101 102 103 104 105 106
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
107

C
chengduo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
123

C
chengduo 已提交
124 125 126 127 128
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
129
    // for single card training, fuse_all_reduce_ops is unnecessary.
130
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
131 132
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
133
    // Fuse all the optimization operators.
C
chengduo 已提交
134 135 136
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
137
    if (strategy_.fuse_all_optimizer_ops_) {
138 139 140
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
141
    }
C
chengduo 已提交
142
  }
C
chengduo 已提交
143

C
chengduo 已提交
144 145 146 147 148 149 150 151 152
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
153
    }
C
chengduo 已提交
154
    VLOG(1) << "CollectiveContext:" << context->String();
155 156
  }

157
  // Convert graph to run on multi-devices.
C
chengduo 已提交
158
  void AppendMultiDevPass() {
C
chengduo 已提交
159
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
160 161 162
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
163 164
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
165 166 167 168 169 170 171 172 173 174 175
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
176 177 178 179 180 181
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

217 218 219 220
 private:
  BuildStrategy strategy_;
};

221
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
222 223
    bool finalize_strategy) const {
  if (is_finalized_) {
224 225
    return pass_builder_;
  }
226
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
227 228
  if (finalize_strategy) {
    is_finalized_ = true;
229
  }
X
fix  
Xin Pan 已提交
230
  return pass_builder_;
231 232
}

233
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
234
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
235 236
}

237 238 239 240 241
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
P
peizhilin 已提交
242
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
243 244
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
245
#else
246
                                const bool use_cuda) const {
247
#endif
248
  VLOG(3) << "apply all passes";
249 250
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
251 252

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
G
gongweibao 已提交
253
    VLOG(3) << "BuildStrategy::Apply pass:" << pass->Type();
254 255 256
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
257 258
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
259 260
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
261
                                                    &local_scopes);
262 263
      pass->Erase(ir::kNRanks);
      pass->Set<size_t>(ir::kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
264

P
peizhilin 已提交
265
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
266
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
267
      pass->Erase(kNCCLCtxs);
268
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
269
#endif
C
chengduo 已提交
270
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
C
chengduo 已提交
271 272 273 274 275 276
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
277 278 279 280 281 282
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
283
#endif
284
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
C
chengduo 已提交
285 286 287 288 289
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
S
sneaxiy 已提交
290
    } else if (pass->Type() == "sequential_execution_pass") {
291 292
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
293
    } else if (pass->Type() == "all_reduce_deps_pass") {
294
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
295
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
296
      pass->Erase(kNCCLCtxs);
297
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
298 299 300 301
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
302 303
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
304 305 306 307 308 309
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
310 311 312
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
313 314 315 316 317 318
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
319
    }
320
    VLOG(3) << "Start Apply Pass " << pass->Type();
321
    graph = pass->Apply(graph);
322
    VLOG(3) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
323
  }
Q
Qiao Longfei 已提交
324
  VLOG(3) << "All Passes Applied";
325 326
  return graph;
}
D
dzhwinter 已提交
327

328 329 330 331
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
332
USE_PASS(sync_batch_norm_pass);
333
USE_PASS(fuse_relu_depthwise_conv_pass);
334 335
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
336
USE_PASS(multi_batch_merge_pass);
337
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
338
USE_PASS(all_reduce_mode_multi_devices_pass);
339
USE_PASS(dist_multi_devices_pass);
340 341
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
342
USE_PASS(sequential_execution_pass);
343
USE_PASS(all_reduce_deps_pass);
344
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
345
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
346
USE_PASS(lock_free_optimize_pass);
347
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
348
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
349 350
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
351
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
352
USE_PASS(fuse_all_reduce_op_pass);
353
USE_PASS(runtime_context_cache_pass);
354 355 356
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif