build_strategy.cc 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29
DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
31

32 33 34 35
namespace paddle {
namespace framework {
namespace details {

36
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
37 38
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
39
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
40
  // don't need to append it here.
Y
Yancey1989 已提交
41
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
42 43
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
44 45
}

C
chengduo 已提交
46 47 48 49 50 51
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

52 53 54 55
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
56
    ResolveOptionConfliction();
C
chengduo 已提交
57

C
chengduo 已提交
58 59 60 61 62
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

63 64
    AppendPassToUseNgraph("ngraph_subgraph_pass");

C
chengduo 已提交
65 66
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
67

C
chengduo 已提交
68
    AppendMultiDevPass();
69
    AppendSetReaderDeviceIndexPass();
C
chengduo 已提交
70 71 72 73 74 75 76 77 78 79 80 81
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
82

C
chengduo 已提交
83 84
    SetCollectiveContext();
  }
85

C
chengduo 已提交
86 87 88
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
89
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
90
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
91 92
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
93
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
94 95 96
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
97
    }
C
chengduo 已提交
98
    if (strategy_.is_distribution_) {
C
chengduo 已提交
99
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
100 101 102
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
103
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
104 105 106
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
107
    }
C
chengduo 已提交
108
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
109
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
110 111 112
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
113
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
114 115
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
116
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
117
    }
C
chengduo 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
131 132
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
133 134 135 136
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
137 138
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
139
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
140
    }
C
chengduo 已提交
141
  }
142

C
chengduo 已提交
143 144 145 146 147 148
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
149

C
chengduo 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
165

C
chengduo 已提交
166 167 168
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
169
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
170
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
171
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
172 173 174
#else
    LOG(WARNING) << "fusion_group is not enabled for Windows/MacOS now, and "
                    "only effective when running with CUDA GPU.";
175
#endif
C
chengduo 已提交
176 177
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
178
    // for single card training, fuse_all_reduce_ops is unnecessary.
179
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
180 181
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
182
    // Fuse all the optimization operators.
C
chengduo 已提交
183 184 185
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
186
    if (strategy_.fuse_all_optimizer_ops_ == true) {
187 188 189
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
190
    }
C
chengduo 已提交
191
  }
C
chengduo 已提交
192

C
chengduo 已提交
193 194 195 196 197 198 199 200 201
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
202
    }
C
chengduo 已提交
203
    VLOG(1) << "CollectiveContext:" << context->String();
204 205
  }

206
  // Convert graph to run on multi-devices.
C
chengduo 已提交
207
  void AppendMultiDevPass() {
C
chengduo 已提交
208
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
209 210 211
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
212 213
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
214 215 216 217 218 219 220 221 222 223 224
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
225 226 227 228 229 230
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

231 232 233 234
  void AppendSetReaderDeviceIndexPass() {
    AppendPass("set_reader_device_index_pass");
  }

C
chengduo 已提交
235 236 237 238 239 240 241 242 243 244 245
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
246 247 248 249 250
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

275 276 277 278 279 280 281 282 283 284 285 286
  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
287 288
                      platform::errors::PreconditionNotMet(
                          "Please compile with NGRAPH first to use NGRAPH"));
289 290 291
#endif
  }

292 293 294 295
 private:
  BuildStrategy strategy_;
};

296
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
297 298
    bool finalize_strategy) const {
  if (is_finalized_) {
299 300
    return pass_builder_;
  }
301
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
302 303
  if (finalize_strategy) {
    is_finalized_ = true;
304
  }
X
fix  
Xin Pan 已提交
305
  return pass_builder_;
306 307
}

308
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
309
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
310 311
}

312 313 314 315 316
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
317
#if defined(PADDLE_WITH_NCCL)
318 319
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
320
#else
321
                                const bool use_cuda) const {
322
#endif
C
chengduo 已提交
323
  VLOG(1) << "apply all passes";
324 325
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
326 327

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
328
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
329 330 331
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
332 333
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
334 335
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
336
                                                    &local_scopes);
337 338
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
339

340
#if defined(PADDLE_WITH_NCCL)
341
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
342
      pass->Erase(kNCCLCtxs);
343
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
344
#endif
C
chengduo 已提交
345
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
346 347
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
348 349 350 351 352
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
353
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
354 355 356 357 358 359
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
360
#endif
361
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
362 363
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
364
    } else if (pass->Type() == "sequential_execution_pass") {
365 366
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
367
    } else if (pass->Type() == "all_reduce_deps_pass") {
368
#if defined(PADDLE_WITH_NCCL)
369
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
370
      pass->Erase(kNCCLCtxs);
371
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
372 373 374 375
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
376 377
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
378 379 380 381 382 383
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
384 385 386 387 388 389
    } else if (pass->Type() == "fusion_group_pass") {
      pass->Set<bool>("use_gpu", new bool(use_cuda));
      if (!use_cuda) {
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
390 391 392 393 394 395
    } else if (pass->Type() == "fuse_bn_act_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
396 397 398
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
399 400 401 402 403 404
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
405 406 407
    } else if (pass->Type() == "set_reader_device_index_pass") {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
X
fix  
Xin Pan 已提交
408
    }
C
chengduo 已提交
409
    VLOG(1) << "Start Apply Pass " << pass->Type();
410
    graph = pass->Apply(graph);
C
chengduo 已提交
411
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
412
  }
C
chengduo 已提交
413
  VLOG(1) << "All Passes Applied";
414 415
  return graph;
}
D
dzhwinter 已提交
416

417 418 419 420
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
421
USE_PASS(sync_batch_norm_pass);
422
USE_PASS(fuse_relu_depthwise_conv_pass);
423
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
424
USE_PASS(fuse_bn_act_pass);
425
USE_PASS(graph_viz_pass);
426
USE_PASS(multi_batch_merge_pass);
427
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
428
USE_PASS(all_reduce_mode_multi_devices_pass);
429
USE_PASS(dist_multi_devices_pass);
430 431
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
432
USE_PASS(sequential_execution_pass);
433
USE_PASS(all_reduce_deps_pass);
434
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
435
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
436
USE_PASS(lock_free_optimize_pass);
437
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
438
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
439 440
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
441
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
442
USE_PASS(fuse_all_reduce_op_pass);
443
USE_PASS(runtime_context_cache_pass);
444
USE_PASS(set_reader_device_index_pass);
445 446 447
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
448 449 450
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif
451
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
452 453
USE_PASS(fusion_group_pass);
#endif