build_strategy.cc 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17
#include <glog/logging.h>
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_printer.h"
20
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
21

22 23
DECLARE_bool(use_mkldnn);

24 25 26 27
namespace paddle {
namespace framework {
namespace details {

28
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
29 30
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
31
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
32
  // don't need to append it here.
Y
Yancey1989 已提交
33
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
34 35
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
36 37
}

C
chengduo 已提交
38 39 40 41 42 43
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

44 45 46 47
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
48
    ResolveOptionConfliction();
C
chengduo 已提交
49

C
chengduo 已提交
50 51 52 53 54 55 56
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
57

58
    AppendAddReaderDependencyPass();
C
chengduo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
72

C
chengduo 已提交
73 74
    SetCollectiveContext();
  }
75

C
chengduo 已提交
76 77 78
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
79
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
80
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
81 82
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
83
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
84 85 86
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
87
    }
C
chengduo 已提交
88
    if (strategy_.is_distribution_) {
C
chengduo 已提交
89
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
90 91 92
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
93
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
94 95 96
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
97
    }
C
chengduo 已提交
98
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
99
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
100 101 102
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
103
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
104 105
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
106
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
107
    }
C
chengduo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
121 122
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
123 124 125 126
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
127 128
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
129
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
130
    }
C
chengduo 已提交
131
  }
132

C
chengduo 已提交
133 134 135 136 137 138
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
139

C
chengduo 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
155

C
chengduo 已提交
156 157 158
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
159
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
Z
Zhang Ting 已提交
160
    AppendPassWithCheck(strategy_.fuse_bn_add_act_ops_, "fuse_bn_add_act_pass");
161
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
162
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
163 164 165
#else
    LOG(WARNING) << "fusion_group is not enabled for Windows/MacOS now, and "
                    "only effective when running with CUDA GPU.";
166
#endif
C
chengduo 已提交
167 168
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
169
    // for single card training, fuse_all_reduce_ops is unnecessary.
170
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
171 172
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
173
    // Fuse all the optimization operators.
C
chengduo 已提交
174 175 176
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
177
    if (strategy_.fuse_all_optimizer_ops_ == true) {
178 179 180
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
181
    }
C
chengduo 已提交
182
  }
C
chengduo 已提交
183

C
chengduo 已提交
184 185 186 187
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
188 189 190 191 192 193 194
    PADDLE_ENFORCE_GE(
        strategy_.trainer_id_, 0,
        platform::errors::InvalidArgument(
            "The trainer_id_ of strategy_ must be greater than or equal to 0, "
            "but received strategy_.trainer_id_ = %d.",
            strategy_.trainer_id_));

C
chengduo 已提交
195
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
196 197 198 199 200 201 202 203 204 205
      PADDLE_ENFORCE_LT(
          static_cast<size_t>(strategy_.trainer_id_),
          strategy_.trainers_endpoints_.size(),
          platform::errors::InvalidArgument(
              "The trainer_id_ of strategy_ must be less than the "
              "size of vector strategy_.trainers_endpoints_, "
              "but received strategy_.trainer_id_ = %d, "
              "the size of strategy_.trainers_endpoints_ is %d.",
              static_cast<size_t>(strategy_.trainer_id_),
              strategy_.trainers_endpoints_.size()));
S
sneaxiy 已提交
206
    }
C
chengduo 已提交
207
    VLOG(1) << "CollectiveContext:" << context->String();
208 209
  }

210 211 212 213
  void AppendAddReaderDependencyPass() {
    AppendPass("add_reader_dependency_pass");
  }

214
  // Convert graph to run on multi-devices.
C
chengduo 已提交
215
  void AppendMultiDevPass() {
C
chengduo 已提交
216
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
217 218 219
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
220 221
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
222 223 224 225 226 227 228 229 230 231
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
232 233
          PADDLE_THROW(
              platform::errors::Unimplemented("Unknown reduce strategy."));
234 235 236 237 238 239
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
240 241 242 243 244 245 246 247 248 249 250
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
251 252 253 254 255
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
275 276 277 278 279
    PADDLE_ENFORCE_NE(FLAGS_use_mkldnn, true,
                      platform::errors::PreconditionNotMet(
                          "FLAGS_use_mkldnn has been set to True, but "
                          "PaddlePaddle is compiled without MKLDNN. "
                          "Please compile PaddlePaddle with MKLDNN first."));
C
chengduo 已提交
280 281 282
#endif
  }

283 284 285 286
 private:
  BuildStrategy strategy_;
};

287
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
288 289
    bool finalize_strategy) const {
  if (is_finalized_) {
290 291
    return pass_builder_;
  }
292
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
293 294
  if (finalize_strategy) {
    is_finalized_ = true;
295
  }
X
fix  
Xin Pan 已提交
296
  return pass_builder_;
297 298
}

299
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
300
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
301 302
}

303 304 305 306 307
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
308
#if defined(PADDLE_WITH_NCCL)
309
                                DeviceType use_device,
310
                                platform::NCCLCommunicator *nccl_ctxs) const {
311 312 313
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
                                DeviceType use_device,
                                platform::BKCLCommunicator *bkcl_ctxs) const {
314
#else
315
                                DeviceType use_device) const {
316
#endif
C
chengduo 已提交
317
  VLOG(1) << "apply all passes";
318 319
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
320 321

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
322
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
323 324 325
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
326 327
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
328 329
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
330
                                                    &local_scopes);
331 332
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
333

334
#if defined(PADDLE_WITH_NCCL)
335 336
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
337
      pass->Erase(kNCCLCtxs);
338
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
339 340 341 342 343 344
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      // ToDo: more check
      platform::BKCLCommunicator *bkcl_ctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, bkcl_ctx);
345
#endif
C
chengduo 已提交
346
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
347 348
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
349 350 351 352 353
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
354
#if defined(PADDLE_WITH_NCCL)
355 356
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
357 358 359 360 361
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
362 363 364 365 366 367 368 369 370 371 372
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
373
#endif
374
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
375 376
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
377
    } else if (pass->Type() == "sequential_execution_pass") {
378 379
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
380
    } else if (pass->Type() == "all_reduce_deps_pass") {
381
#if defined(PADDLE_WITH_NCCL)
382 383
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
384
      pass->Erase(kNCCLCtxs);
385
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
386 387 388
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
389 390 391 392 393 394 395 396 397 398 399
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
400
#endif
401 402
      VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
              << ", num_trainers:" << num_trainers_;
403
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
404
      if (use_device != p::kCUDA) {
405 406 407 408
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
409
    } else if (pass->Type() == "fusion_group_pass") {
410 411
      pass->Set<bool>("use_gpu", new bool((use_device == p::kCUDA)));
      if (use_device != p::kCUDA) {
412 413 414
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
415
    } else if (pass->Type() == "fuse_bn_act_pass") {
416
      if (use_device != p::kCUDA) {
Z
Zhen Wang 已提交
417 418 419 420
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
Z
Zhang Ting 已提交
421
    } else if (pass->Type() == "fuse_bn_add_act_pass") {
422
      if (use_device != p::kCUDA) {
Z
Zhang Ting 已提交
423 424 425 426
        LOG(WARNING) << "fuse_bn_add_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
427 428 429
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
430
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
431
      if (use_device != p::kCUDA) {
432 433 434 435
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
436
    }
C
chengduo 已提交
437
    VLOG(1) << "Start Apply Pass " << pass->Type();
438
    graph = pass->Apply(graph);
C
chengduo 已提交
439
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
440
  }
C
chengduo 已提交
441
  VLOG(1) << "All Passes Applied";
442 443
  return graph;
}
D
dzhwinter 已提交
444

445 446 447 448
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
449
USE_PASS(sync_batch_norm_pass);
450
USE_PASS(fuse_relu_depthwise_conv_pass);
451
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
452
USE_PASS(fuse_bn_act_pass);
Z
Zhang Ting 已提交
453
USE_PASS(fuse_bn_add_act_pass);
454
USE_PASS(graph_viz_pass);
455
USE_PASS(multi_batch_merge_pass);
456
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
457
USE_PASS(all_reduce_mode_multi_devices_pass);
458
USE_PASS(dist_multi_devices_pass);
459 460
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
461
USE_PASS(sequential_execution_pass);
462
USE_PASS(all_reduce_deps_pass);
463
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
464
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
465
USE_PASS(lock_free_optimize_pass);
466
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
467
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
468 469
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
470
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
471
USE_PASS(fuse_all_reduce_op_pass);
472
USE_PASS(runtime_context_cache_pass);
473
USE_PASS(add_reader_dependency_pass);
474 475 476
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
477
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
478 479
USE_PASS(fusion_group_pass);
#endif