tensor.py 61.5 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16 17 18
import numpy
import warnings

Y
Yu Yang 已提交
19
from ..layer_helper import LayerHelper
20
from ..param_attr import ParamAttr
21
from ..initializer import Initializer
22 23 24 25 26 27 28 29 30 31
from ..framework import (
    _current_expected_place,
    convert_np_dtype_to_dtype_,
    _non_static_mode,
    _varbase_creator,
    device_guard,
    _in_legacy_dygraph,
    in_dygraph_mode,
    _get_paddle_place,
)
X
xuwei06 已提交
32
from ..framework import Variable
33
from ..initializer import Constant
34
from ..core import VarDesc
35
from .. import core
36
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
37
from . import utils
38 39 40 41 42 43
from ..data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
44
from paddle.utils import deprecated
45

46
from .utils import check_shape
47
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
48 49

__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
Y
Yu Yang 已提交
71 72 73
]


X
xuwei06 已提交
74
def create_tensor(dtype, name=None, persistable=False):
75
    """
W
wangchaochaohu 已提交
76
    Create a variable, which will hold a Tensor with data type dtype.
77 78

    Args:
W
wangchaochaohu 已提交
79 80
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
81
        name(string, optional): The default value is None.  Normally there is no need for
W
wangchaochaohu 已提交
82
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
83
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
84
            default value is False.
85 86

    Returns:
W
wangchaochaohu 已提交
87
        Variable: The tensor to be created according to dtype.
88 89 90 91

    Examples:
        .. code-block:: python

92
          import paddle.fluid as fluid
93 94
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
Y
Yu Yang 已提交
110
    helper = LayerHelper("create_tensor", **locals())
111 112 113
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )
Y
Yu Yang 已提交
114 115


116 117 118
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
119
    """
120
        :api_attr: Static Graph
S
swtkiwi 已提交
121

122
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
123 124 125 126 127
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

128 129 130 131 132 133 134
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
135 136 137
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
138
        default_initializer (Initializer, optional): Initializer for the parameter
139 140

    Returns:
141
        The created parameter.
Y
yuyang18 已提交
142 143

    Examples:
144 145
        .. code-block:: python

146 147 148
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
149
    """
150 151
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        check_type(
            item,
            'item of shape',
            (
                int,
                numpy.uint8,
                numpy.int8,
                numpy.int16,
                numpy.int32,
                numpy.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
182
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
183 184 185 186 187 188
    check_type(
        default_initializer,
        'default_initializer',
        (type(None), Initializer),
        'create_parameter',
    )
189

Q
Qiao Longfei 已提交
190
    helper = LayerHelper("create_parameter", **locals())
191
    if attr is None:
X
xuwei06 已提交
192
        attr = ParamAttr(name=name)
193 194 195
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )
196 197


198 199 200
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
201
    """
202
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
203

204
    Parameters:
205
        shape (list[int]|tuple[int]): Shape of the variable
206
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
207
                      variable will be filled with it.
208 209
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
210
                           Default: False
211
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
212
                         Default: False
213 214
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
215 216

    Returns:
217
        Variable: The created Variable
F
fengjiayi 已提交
218 219 220 221

    Examples:
        .. code-block:: python

222 223 224
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
225
                                           persistable=True, force_cpu=True, name='new_var')
226
    """
227 228 229
    check_type(
        shape, 'shape', (list, tuple, numpy.ndarray), 'create_global_var'
    )
230
    for item in shape:
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        check_type(
            item,
            'item of shape',
            (
                int,
                numpy.uint8,
                numpy.int8,
                numpy.int16,
                numpy.int32,
                numpy.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )
262

Q
Qiao Longfei 已提交
263
    helper = LayerHelper("global_var", **locals())
264 265 266 267 268 269 270 271 272 273
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
        var, initializer=Constant(value=float(value), force_cpu=force_cpu)
    )
M
minqiyang 已提交
274

Q
Qiao Longfei 已提交
275 276 277
    return var


278
def cast(x, dtype):
Y
Yu Yang 已提交
279
    """
S
swtkiwi 已提交
280

281
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
282 283
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
284 285

    Args:
286
        x(Tensor): An input N-D Tensor with data type bool, float16,
287
            float32, float64, int32, int64, uint8.
288
        dtype(np.dtype|str): Data type of the output:
289
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
290 291

    Returns:
292
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
293 294 295

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
296

297
            import paddle
298

299 300
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
301
    """
H
hong 已提交
302 303 304
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
305
        return _C_ops.cast(x, dtype)
H
hong 已提交
306

J
Jiabin Yang 已提交
307
    if _non_static_mode():
308 309
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
310
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
311
        return out
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
346 347

    helper = LayerHelper('cast', **locals())
348
    out = helper.create_variable_for_type_inference(
349 350 351 352 353 354 355 356
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
Y
Yu Yang 已提交
357 358 359
    return out


360
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
361
    """
362
    This OP concatenates the input along the axis.
363 364

    Args:
365
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
366
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type.
367 368
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
369
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
370
            as ``axis+R``. Default is 0.
371 372 373
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
374 375

    Returns:
376
        Tensor: A Tensor with the same data type as ``input``.
377 378 379

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
380

381
            import paddle.fluid as fluid
382 383
            import numpy as np

384 385 386 387 388 389
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
390 391 392 393
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
394 395
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
396 397
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
398 399 400 401 402 403 404 405
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
406
    """
407

408 409 410 411 412 413
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
414
        out = _C_ops.concat(input, axis)
415
        return out
416 417

    if _in_legacy_dygraph():
S
songyouwei 已提交
418 419
        if isinstance(axis, Variable):
            axis = axis.numpy()
420
            axis = axis.item(0)
421 422
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
423
        out = _varbase_creator()
424
        _legacy_C_ops.concat(input, out, 'axis', axis)
425
        return out
426

427 428 429 430
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
431 432
                x,
                'input[' + str(id) + ']',
433
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
434 435
                'concat',
            )
436 437
            if x.dtype != input[0].dtype:
                raise TypeError(
438 439
                    "All the Tensors in the input must have the same data type."
                )
440
    else:
441
        input = [input]
442
    check_type(axis, 'axis', (int, Variable), 'concat')
443

444 445
    if isinstance(axis, Variable):
        check_dtype(
446 447 448 449 450
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
451
        )
452

453
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
454
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
455 456

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
457 458 459 460
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

461 462 463 464
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
465
        out_index = helper.create_variable_for_type_inference(dtype="int32")
466 467 468 469 470 471
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
472 473 474 475 476
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
477
        attrs['axis'] = axis
478

479 480 481
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
Y
Yu Yang 已提交
482 483 484
    return out


G
Guo Sheng 已提交
485
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
486
    r"""
G
Guo Sheng 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
537 538

    Args:
G
Guo Sheng 已提交
539 540 541 542 543 544 545
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
546 547

    Returns:
G
Guo Sheng 已提交
548 549 550
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
551 552 553 554

    Examples:
        .. code-block:: python

555
            import paddle.fluid as fluid
556
            import numpy as np
G
Guo Sheng 已提交
557 558 559 560 561 562 563
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
564
    """
J
Jiabin Yang 已提交
565
    if _non_static_mode():
566
        assert isinstance(
567 568
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
569
        from .nn import concat
570
        from ..dygraph import to_variable
571
        from paddle import stack
572

573 574 575
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
576 577
            numpy.array(list(map(lambda x: int(x.shape[axis]), input)))
        )
578 579
        return res, sizes

580 581 582
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
583 584 585 586 587 588
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'tensor_array_to_tensor',
            )
L
li099 已提交
589
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
590 591
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
592 593 594 595 596 597
    helper.append_op(
        type='tensor_array_to_tensor',
        inputs={'X': input},
        outputs={'Out': [out], 'OutIndex': [out_index]},
        attrs={'axis': axis, 'use_stack': use_stack},
    )
L
li099 已提交
598 599 600
    return out, out_index


601
def sums(input, out=None):
602
    r"""
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
624 625

    Args:
626 627 628 629
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
630 631

    Returns:
632 633
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
634 635

    Examples:
F
fengjiayi 已提交
636
        .. code-block:: python
K
kavyasrinet 已提交
637

638 639 640 641 642 643 644 645 646
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
647

648 649
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
650
    """
651 652 653
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
654 655 656 657 658 659
            check_variable_and_dtype(
                input_section,
                "input",
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'sums',
            )
660
    else:
661 662 663 664 665 666
        check_variable_and_dtype(
            input,
            "input",
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'sums',
        )
667

Y
Yu Yang 已提交
668 669
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
670
        out = helper.create_variable_for_type_inference(
671 672
            dtype=helper.input_dtype()
        )
673
    else:
674 675 676 677 678 679 680 681 682 683
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums'
        )

    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False},
    )
Y
Yu Yang 已提交
684 685 686
    return out


F
fengjiayi 已提交
687
def assign(input, output=None):
688
    """
S
swtkiwi 已提交
689

690
    The OP copies the :attr:`input` to the :attr:`output`.
691

692
    Parameters:
693 694 695 696
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
697
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
698
            be created as :attr:`output`. Default: None.
699 700

    Returns:
701
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
702 703 704

    Examples:
        .. code-block:: python
705

706
          import paddle
707
          import numpy as np
708
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
709 710 711 712
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
713 714 715
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
716
    """
Y
Yu Yang 已提交
717
    helper = LayerHelper('assign', **locals())
718 719 720 721 722 723
    check_type(
        input,
        'input',
        (Variable, numpy.ndarray, list, tuple, float, int, bool),
        'assign',
    )
724 725
    is_inplace = True if output is not None else False

726 727 728 729
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
730 731
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
732
    # but _non_static_mode()==False under @to_static, which means
733 734 735
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
736
        if _non_static_mode():
C
chentianyu03 已提交
737
            if in_dygraph_mode() and output is None:
738
                output = _C_ops.assign(input)
739 740
            elif in_dygraph_mode() and output is not None:
                _C_ops.assign_out_(input, output)
C
chentianyu03 已提交
741 742 743 744 745 746
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
747
                _legacy_C_ops.assign(input, output)
748
        else:
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
765 766
            if output is None:
                output = helper.create_variable_for_type_inference(
767 768 769 770 771
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
X
xuwei06 已提交
772
    elif isinstance(input, numpy.ndarray):
773 774 775 776 777
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
778
        dtype = convert_np_dtype_to_dtype_(input.dtype)
779 780 781 782 783 784
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
785 786
                "it to float32"
            )
787
            dtype = VarDesc.VarType.FP32
788 789
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
790
            values = [int(v) for v in input.flat]
791
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
792
            value_name = "fp32_values"
793
            values = [float(v) for v in input.flat]
794
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
795
            value_name = "int32_values"
796
            values = [int(v) for v in input.flat]
797 798 799
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
800
        else:
801 802
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
803
                "the data type of 'input' must be bool, float32, int32 or int64, but "
804 805
                "received %s." % convert_dtype(dtype)
            )
806
        if input.size > 1024 * 1024:
807 808 809 810
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
811 812 813
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
814 815 816 817 818 819 820
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
821 822 823
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
824 825 826 827 828 829 830 831 832
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
833
        else:
834 835
            if output is None:
                output = helper.create_variable_for_type_inference(
836 837 838 839 840 841 842 843 844 845 846
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
X
xuwei06 已提交
847

J
Jiabin Yang 已提交
848
    if is_inplace and _non_static_mode():
849
        output._bump_inplace_version()
850

Y
Yu Yang 已提交
851 852 853
    return output


854
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
855
    """
S
swtkiwi 已提交
856

W
wangchaochaohu 已提交
857
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
858
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
859

T
tianshuo78520a 已提交
860
    The attribute `stop_gradient` of the created Tensor is set to True.
861 862

    Args:
863 864 865
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
866
        dtype(np.dtype|str): Data type of the output Tensor which can
867
            be float16, float32, float64, uint8, int16, int32, int64.
868
        value(bool|float|int|Tensor): The constant value used to initialize
869 870
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
871
        out(Tensor, optional): Optional output which can be any created
872 873
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
874 875
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
876 877

    Returns:
878
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
879

880 881 882
    Examples:
        .. code-block:: python

883
          import paddle.fluid as fluid
884
          # attr shape is a list which doesn't contain  Tensor.
885 886
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
887
          # data1=[[5], [5]] data2=[[5], [5]]
888

889
          # attr shape is a list which contains Tensor.
890
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
891
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
892

893
          # attr shape is a Tensor.
894
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
895
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
896

897
          # attr value is a Tensor.
W
wangchaochaohu 已提交
898 899
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
900
    """
901

W
wangchaochaohu 已提交
902
    attrs = {'force_cpu': force_cpu}
903
    dtype = convert_dtype(dtype)
904
    if not isinstance(value, Variable):
905
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
906
            attrs['str_value'] = str(int(value))
907
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
908 909
        else:
            attrs['str_value'] = str(float(value))
910
            attrs['value'] = float(value)
911

912 913 914 915 916
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
917
            shape = utils.convert_shape_to_list(shape)
918 919 920 921 922

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
923
            out = _C_ops.full(shape, float(value), dtype, place)
924 925 926
            out.stop_gradient = True
            return out

927 928
        if out is not None:
            # final state mode is support out is not None.
929
            _C_ops.full_(out, shape, float(value), dtype, place)
930 931
            out.stop_gradient = True
            return out
932

933 934 935 936 937 938 939 940 941 942 943
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

944 945 946 947 948 949 950 951 952 953 954 955 956
        _legacy_C_ops.fill_constant(
            out,
            'value',
            float(value),
            'force_cpu',
            force_cpu,
            'dtype',
            out.dtype,
            'str_value',
            attrs['str_value'],
            'shape',
            shape,
        )
957 958 959
        out.stop_gradient = True
        return out

960 961 962
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
963 964
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
965 966
        inputs['ValueTensor'] = value

967
    check_shape(shape)
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'uint8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'fill_constant',
    )
985
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
986

987
    if out is not None:
988 989 990
        check_variable_and_dtype(
            out, 'out', [convert_dtype(dtype)], 'fill_constant'
        )
991 992

    helper = LayerHelper("fill_constant", **locals())
993 994 995
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
    )
L
liym27 已提交
996

Y
Yu Yang 已提交
997
    if out is None:
X
Xin Pan 已提交
998
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
999
    attrs['dtype'] = out.dtype
1000 1001 1002 1003 1004 1005 1006
    helper.append_op(
        type='fill_constant',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
Y
Yu Yang 已提交
1007 1008 1009 1010
    out.stop_gradient = True
    return out


1011
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
1012
@templatedoc()
1013 1014 1015 1016 1017 1018 1019 1020 1021
def fill_constant_batch_size_like(
    input,
    shape,
    dtype,
    value,
    input_dim_idx=0,
    output_dim_idx=0,
    force_cpu=False,
):
1022
    """
T
tianshuo78520a 已提交
1023
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
1024 1025 1026 1027
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
1028 1029

    Args:
W
wangchaochaohu 已提交
1030 1031 1032 1033 1034
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
1035
        value(float|int): The constant value used to initialize the Tensor to be created.
W
wangchaochaohu 已提交
1036 1037 1038 1039 1040
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
1041
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
1042 1043

    Returns:
W
wangchaochaohu 已提交
1044
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
1045 1046 1047 1048 1049

    Examples:

        .. code-block:: python

1050
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
1051
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
1052
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
1053
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
1054

1055
    """
1056 1057 1058 1059 1060 1061 1062
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
1063 1064 1065
        out = _C_ops.full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place
        )
1066 1067 1068
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
1069
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
1070
    out = helper.create_variable_for_type_inference(dtype=dtype)
1071 1072 1073 1074 1075 1076
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
1077
        'force_cpu': force_cpu,
1078 1079 1080 1081 1082
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
1083 1084 1085 1086 1087 1088
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs=attrs,
    )
Y
Yu Yang 已提交
1089 1090 1091 1092
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
1093 1094
def argmin(x, axis=0):
    """
1095 1096 1097
        :alias_main: paddle.argmin
        :alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
        :old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
1098

S
sneaxiy 已提交
1099 1100
    **argmin**

1101 1102
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1103 1104

    Args:
1105 1106 1107 1108 1109
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1110

S
sneaxiy 已提交
1111
    Returns:
1112
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1113

S
sneaxiy 已提交
1114 1115
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1116

1117
            import paddle.fluid as fluid
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
1145
    """
1146
    check_variable_and_dtype(
1147 1148 1149 1150 1151
        x,
        'x',
        ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin',
    )
S
sneaxiy 已提交
1152
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
1153
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1154 1155 1156 1157 1158 1159
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
1160
    out.stop_gradient = True
S
sneaxiy 已提交
1161 1162 1163 1164 1165 1166 1167
    return out


def argmax(x, axis=0):
    """
    **argmax**

1168 1169
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1170 1171

    Args:
1172 1173 1174 1175 1176
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1177

S
sneaxiy 已提交
1178
    Returns:
1179
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1180

S
sneaxiy 已提交
1181 1182
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1183

1184
            import paddle.fluid as fluid
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1212
    """
1213
    check_variable_and_dtype(
1214 1215 1216 1217 1218
        x,
        'x',
        ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax',
    )
S
sneaxiy 已提交
1219
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1220
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1221 1222 1223 1224 1225 1226
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
1227
    out.stop_gradient = True
S
sneaxiy 已提交
1228 1229 1230
    return out


1231
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1232
    """
1233 1234 1235
        :alias_main: paddle.argsort
        :alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
        :old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1236

1237 1238 1239
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1240 1241

    Args:
1242 1243 1244 1245 1246
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1247 1248 1249
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1250 1251 1252
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1253 1254

    Returns:
1255 1256 1257
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1258 1259 1260 1261

    Examples:
        .. code-block:: python

1262
            import paddle.fluid as fluid
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1304
    """
1305
    check_variable_and_dtype(
1306 1307 1308 1309 1310
        input,
        'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort',
    )
Y
Yibing Liu 已提交
1311
    helper = LayerHelper("argsort", **locals())
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True
    )
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True
    )
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out, 'Indices': ids},
        attrs={'axis': axis, 'descending': descending},
    )
Y
Yibing Liu 已提交
1324 1325 1326
    return out, ids


Y
Yang Yu 已提交
1327
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1328
    """
1329 1330
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1331

1332
    Parameters:
1333
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1334
        dtype (np.dtype|str): Data type of output Tensor, it supports
1335
            bool, float16, float32, float64, int32 and int64.
1336 1337
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1338
            Default: False.
1339 1340

    Returns:
1341
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1342 1343 1344 1345

    Examples:
        .. code-block:: python

1346
          import paddle.fluid as fluid
1347
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
1348

1349 1350 1351
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1352 1353 1354 1355
    """
    return fill_constant(value=1.0, **locals())


1356
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1357
    """
1358 1359
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1360

1361
    Parameters:
1362
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1363
        dtype (np.dtype|str): Data type of output Tensor, it supports
1364
            bool, float16, float32, float64, int32 and int64.
1365 1366
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1367
            Default: False.
1368 1369
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1370 1371

    Returns:
1372
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1373 1374 1375 1376

    Examples:
        .. code-block:: python

1377
          import paddle.fluid as fluid
1378
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1379

1380 1381 1382
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1383 1384
    """
    return fill_constant(value=0.0, **locals())
1385 1386


F
fengjiayi 已提交
1387 1388
def reverse(x, axis):
    """
1389 1390 1391
        :alias_main: paddle.reverse
        :alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
        :old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1392

1393
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1419
    Parameters:
1420 1421
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1422 1423
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1424 1425
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1426 1427

    Returns:
1428
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1429 1430 1431 1432

    Examples:
        .. code-block:: python

1433
          import paddle.fluid as fluid
1434 1435 1436 1437
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1448
    """
1449 1450 1451
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse'
    )
1452
    check_type(axis, 'axis', (int, tuple, list, Variable), 'reverse')
F
fengjiayi 已提交
1453 1454
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1455
    if in_dygraph_mode():
1456
        return _C_ops.reverse(x, axis)
F
fengjiayi 已提交
1457
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1458
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1459 1460 1461 1462 1463 1464
    helper.append_op(
        type='reverse',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
F
fengjiayi 已提交
1465 1466 1467
    return out


1468 1469 1470 1471 1472 1473 1474
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1475 1476 1477
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1478 1479
    """
    helper = LayerHelper("save", **locals())
1480 1481 1482 1483 1484 1485
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path, "overwrite": overwrite},
    )
1486 1487 1488 1489 1490 1491 1492


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1493 1494
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1495
        file_path(str): The file path where variables will be saved.
1496
        overwrite(bool): Whether or not cover the given file when it has already
1497 1498
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1499 1500 1501 1502 1503 1504 1505 1506

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1507
            import paddle.fluid as fluid
1508 1509 1510 1511 1512 1513 1514
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1515 1516
    """
    helper = LayerHelper("save_combine", **locals())
1517 1518 1519 1520 1521 1522
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path, "overwrite": overwrite},
    )
1523 1524 1525 1526


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1527
    Loads a list of variable from a single file.
1528 1529 1530 1531 1532 1533

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1534 1535 1536 1537 1538 1539
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path},
    )
1540 1541 1542 1543 1544 1545 1546


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1547
       x (Tensor): The Tensor to be checked.
1548 1549

    Returns:
S
Steffy-zxf 已提交
1550
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1551

1552 1553
    Examples:
        .. code-block:: python
1554

S
Steffy-zxf 已提交
1555 1556
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1557
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1558
          # [False]
1559

1560
    """
J
Jiabin Yang 已提交
1561
    if _non_static_mode():
1562
        return _legacy_C_ops.isinf(x)
S
Steffy-zxf 已提交
1563

1564
    check_type(x, 'x', (Variable), 'has_inf')
1565
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1566
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1567 1568 1569 1570
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


1571
def linspace(start, stop, num, dtype=None, name=None):
1572
    r"""
1573
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1574 1575

    Args:
1576 1577 1578 1579
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1580
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1581
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1582
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1583
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1584
        name(str, optional): Normally there is no need for user to set this property.
1585
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1586 1587

    Returns:
1588
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1589
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
1590
        the value with input :attr:`start`.
Z
zhoukunsheng 已提交
1591

Z
zhoukunsheng 已提交
1592
    Examples:
Z
zhoukunsheng 已提交
1593 1594
        .. code-block:: python

1595 1596 1597
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1598 1599

    """
1600 1601
    if dtype is None:
        dtype = 'float32'
1602 1603 1604
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1605 1606
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1607 1608
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1609
    if not isinstance(start, Variable):
1610 1611
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1612
    if not isinstance(stop, Variable):
1613 1614
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1615
    if not isinstance(num, Variable):
1616 1617
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1618
    if in_dygraph_mode():
1619 1620 1621 1622 1623 1624 1625
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
1626
    if _in_legacy_dygraph():
1627 1628 1629
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
1630 1631
    helper = LayerHelper("linspace", **locals())

1632 1633 1634
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1635
    if isinstance(start, Variable):
1636 1637 1638 1639 1640 1641
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
1642 1643
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1644

1645
    if isinstance(stop, Variable):
1646 1647 1648 1649 1650 1651
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
1652 1653 1654 1655
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
1666 1667
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
1668 1669 1670 1671
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
1672 1673

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1674

1675 1676 1677 1678 1679 1680
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
1681
    if isinstance(num, int):
1682
        out.desc.set_shape((num,))
Z
zhoukunsheng 已提交
1683
    return out
1684 1685


Z
zhoukunsheng 已提交
1686 1687
def zeros_like(x, out=None):
    """
1688
    This OP creates a zeros tensor which has identical shape and dtype
Z
zhoukunsheng 已提交
1689 1690 1691
    with `x`.

    Args:
1692 1693 1694 1695 1696 1697
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1698 1699

    Returns:
1700 1701 1702
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1703 1704 1705 1706

    Examples:
        .. code-block:: python

1707
          import paddle.fluid as fluid
1708
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1709 1710
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1711
    """
1712 1713 1714
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'zeros_like'
    )
Z
zhoukunsheng 已提交
1715 1716 1717
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1718 1719
    else:
        check_variable_and_dtype(
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
            out,
            "out",
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like',
        )
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 0, "dtype": x.dtype},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
1731 1732
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1733 1734


1735
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1736
def diag(diagonal):
1737
    r"""
1738 1739 1740
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1741

1742
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1743 1744

    Args:
1745 1746
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1747 1748

    Returns:
1749 1750
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1751 1752 1753 1754 1755 1756

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
1757
          #  [0, 0, 5]
1758 1759 1760

          import paddle.fluid as fluid
          import numpy as np
1761 1762 1763
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1764 1765

    """
1766
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
1767 1768 1769 1770 1771 1772
    check_dtype(
        diagonal.dtype,
        'diagonal',
        ['float32', 'float64', 'int32', 'int64'],
        'diag',
    )
Z
zhoukunsheng 已提交
1773 1774 1775 1776 1777 1778 1779
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1780 1781 1782
    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]}
    )
Z
zhoukunsheng 已提交
1783 1784 1785

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1786 1787 1788 1789 1790 1791


def ones_like(x, out=None):
    """
    **ones_like**

1792
    This function creates a ones tensor which has identical shape and dtype
Z
zhoukunsheng 已提交
1793 1794 1795 1796 1797 1798 1799
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1800
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1811 1812 1813
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like'
    )
Z
zhoukunsheng 已提交
1814 1815 1816 1817

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1818 1819
    else:
        check_variable_and_dtype(
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            out,
            "out",
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like',
        )
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
1831
    return out