parallel_executor.cc 52.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
27
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
36
#include "paddle/fluid/platform/event.h"
37
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
38

39 40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

43 44
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
49 50
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
51
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
52
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
53

Y
Yang Yang 已提交
54
namespace paddle {
Y
Yu Yang 已提交
55 56
namespace framework {

Y
Yu Yang 已提交
57
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
58
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
static bool gProfileStarted = false;
Y
Yu Yang 已提交
60
#endif
61

62 63 64 65
#ifdef PADDLE_WITH_CUDA
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
66 67
class ParallelExecutorPrivate {
 public:
68 69 70
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
71
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
72 73
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
74
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
75 76 77
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
78
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
79 80 81 82
#endif
      });
    }
  }
Y
Yu Yang 已提交
83

84 85 86 87 88 89 90 91 92 93 94
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
95

96 97
  bool IsUseCUDA(DeviceType use_device);

98 99 100 101
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

102
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
103 104 105

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

106
  /**
T
tianshuo78520a 已提交
107 108
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
109 110 111 112 113 114
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
115
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
116 117
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
118
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
119 120 121 122
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
123 124 125 126 127
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
128 129 130 131 132 133
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

134
#if defined(PADDLE_WITH_NCCL)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
151 152
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
153 154 155 156 157 158 159 160 161 162 163 164
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
165
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
166 167
      } else {
        nccl_id = new ncclUniqueId();
168 169 170
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
171 172
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
173 174 175 176
      }

      flat_nccl_ids.push_back(nccl_id);

177 178
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
179 180 181 182 183 184
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
185 186
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
187 188 189 190 191 192
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
193 194 195
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
196 197 198 199
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

200 201
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
202 203

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
204 205 206 207
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
208 209 210
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
211 212 213
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
214 215 216 217 218

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
219 220 221
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
222 223 224
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
225

226 227 228 229
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
230 231
    }
  }
232

233
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
234 235 236
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
237 238 239
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
240 241 242 243 244 245
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

246
    if (bst->use_hierarchical_allreduce_) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
262 263 264 265 266

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

267 268
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
269
    InitNCCLCtxs(scope, *bst);
270
  }
271 272
#endif

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_, false,
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
            bkcl_get_unique_id(id.get()), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

    bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                             bst.trainer_id_);
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

357 358 359 360 361
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
362
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
363 364
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
365
  std::vector<Scope *> local_exec_scopes_;
366
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
367
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
368

369 370
  std::unordered_map<std::string, bool> is_persistable_;

371
#if defined(PADDLE_WITH_NCCL)
372
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
373 374
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
375
#endif
C
chengduoZH 已提交
376
  bool own_local_scope_;
377
  DeviceType use_device_;
378
  bool use_all_reduce_;
379
  size_t nranks_;
S
sneaxiy 已提交
380

381
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
382
  ir::GarbageCollectorMap gcs_;
383 384

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
385 386
};

387 388 389 390
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
}

391 392 393 394 395 396 397 398 399 400
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

401
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
418
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
419 420 421 422
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

423 424 425 426 427 428 429 430
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

431 432 433 434
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
435
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
436 437 438 439 440
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

441 442 443 444 445
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
446
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
447 448 449
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
450 451
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
452 453
  }

454
  if (build_strategy_.memory_optimize_.get()) {
455 456 457 458 459 460
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
461 462
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
                                    new bool(use_device_ == p::kCUDA));
463 464 465
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
466 467 468
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
469
  }
470

471
  if (!is_gc_enabled) {
472 473 474 475
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
476 477 478 479 480
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
481
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
482
    if (platform::is_gpu_place(place)) {
483
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
484
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
485
        gc.reset(new UnsafeFastGPUGarbageCollector(
486
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
487
      } else {
S
sneaxiy 已提交
488
        gc.reset(new StreamGarbageCollector(
489
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
490 491
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
492 493 494 495
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
496
#endif
497 498 499 500 501 502 503 504 505
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
      gc.reset(new XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place), max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
S
sneaxiy 已提交
506
#endif
507 508 509 510 511 512 513 514
    } else if (platform::is_cpu_place(place)) {
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
515
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
516 517
  }

S
sneaxiy 已提交
518
  if (!gcs_.empty()) {
S
sneaxiy 已提交
519 520
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
521 522
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
523 524
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
525
                                     &last_live_ops_of_vars);
526
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
527
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
528
    VLOG(10) << "EagerDeletionPass Applied";
529 530 531
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
532 533 534 535
  }
  return graph;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

551 552
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

553 554 555 556
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
void InitP2P(const std::vector<platform::Place> &places) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
      if (!is_gpu_place(places[i])) return;

      platform::CUDAPlace device =
          BOOST_GET_CONST(platform::CUDAPlace, places[i]);
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
606 607 608 609 610 611 612 613
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
614
    : member_(new ParallelExecutorPrivate(places, scope)) {
615
  InitP2P(places);
616 617
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
618
  member_->use_device_ = exec_strategy.use_device_;
D
dzhwinter 已提交
619
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
620 621
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
622
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
623 624 625 626 627 628 629
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
630
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
631
  if (member_->IsUseCUDA(member_->use_device_)) {
632 633 634
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
635 636
  }
#endif
Y
Yancey1989 已提交
637

638
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
639 640 641 642 643 644 645 646 647
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
648 649
#endif

650 651 652 653 654 655 656 657 658
  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

659
  VLOG(1) << string::Sprintf(
660 661
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
662
      device_name, places.size(), places.size());
C
chengduo 已提交
663

664
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
665
  // Create local scopes
666
  if (local_scopes.empty()) {
C
chengduoZH 已提交
667
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
668 669
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
670
      member_->local_scopes_.emplace_back(&scope->NewScope());
671 672
    }
  } else {
C
chengduoZH 已提交
673
    member_->own_local_scope_ = false;
674 675 676 677 678
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
679
    for (size_t i = 0; i < member_->places_.size(); ++i) {
680
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
681
    }
Y
Yu Yang 已提交
682 683
  }

Q
Qiao Longfei 已提交
684
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
685
  if (member_->build_strategy_.async_mode_) {
686
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_), false,
687 688
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
689
    graphs.push_back(graph);
D
dongdaxiang 已提交
690
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
691 692 693 694
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
695
  }
Q
Qiao Longfei 已提交
696

Y
Yancey1989 已提交
697 698 699
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
700 701 702 703
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
704 705 706 707
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
708

709
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
710
#if defined(PADDLE_WITH_NCCL)
711
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
712

W
Wu Yi 已提交
713 714 715
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
716
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
717 718 719
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
720 721
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
722
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
723 724 725
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
726
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
727
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
728
    }
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(scope, member_->build_strategy_);

    auto *bkcl_ctxs =
        member_->bkcl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_bkcl_context(bkcl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
Y
Yu Yang 已提交
750
#endif
C
chengduoZH 已提交
751
  }
Y
Yan Xu 已提交
752 753
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
754
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
755 756 757 758 759 760 761 762 763
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
764
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
765
  if (need_broadcast()) {
C
chengduo 已提交
766
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
767
  }
768

Q
Qiao Longfei 已提交
769
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
770

Q
Qiao Longfei 已提交
771 772 773
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
774
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
775
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
776
    VLOG(3) << "use local async mode";
C
chengduo 已提交
777 778
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
779
        {member_->local_scopes_[0]}, 1, member_->use_device_,
C
chengduo 已提交
780
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
781
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
782 783
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
784
          {member_->local_scopes_[i]}, 1, member_->use_device_,
C
chengduo 已提交
785
          member_->nccl_ctxs_);
786
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
787
    }
Q
Qiao Longfei 已提交
788
  } else {
C
chengduo 已提交
789 790
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
        member_->nranks_, member_->use_device_, member_->nccl_ctxs_);
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->bkcl_ctxs_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->bkcl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->bkcl_ctxs_);
Q
Qiao Longfei 已提交
811
  }
C
chengduoZH 已提交
812
#else
C
chengduo 已提交
813
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
814
    VLOG(3) << "use local async mode";
C
chengduo 已提交
815 816
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
817
        {member_->local_scopes_[0]}, 1, member_->use_device_);
818
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
819
      graphs[i] = member_->build_strategy_.Apply(
820
          graphs[i], {member_->places_[i]}, loss_var_name,
821
          {member_->local_scopes_[i]}, 1, member_->use_device_);
822
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
823
    }
Q
can run  
Qiao Longfei 已提交
824
  } else {
C
chengduo 已提交
825 826
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
827
        member_->nranks_, member_->use_device_);
Q
can run  
Qiao Longfei 已提交
828
  }
Y
Yu Yang 已提交
829
#endif
830

831
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
832

Q
Qiao Longfei 已提交
833 834
  async_graphs[0] = graph;

835 836
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
837
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
838 839 840 841 842 843
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
844 845 846

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
847 848
    }
  }
Y
Yancey1989 已提交
849

850 851 852 853 854 855 856 857 858 859 860
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos.emplace_back();
      var_infos.back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }

861 862 863 864 865 866 867
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

868 869 870 871 872 873
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
874 875 876

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
877
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
878 879
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
880 881 882
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
883
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
884
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
885
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
886 887
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
888 889 890
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

891 892 893 894 895
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
896 897 898 899 900 901 902 903

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
904
#else
905 906
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
907
#endif
Y
yuyang18 已提交
908
  } else {
909 910 911 912 913 914
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
915
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
916 917 918 919 920 921 922 923
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
924
    } else {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
940
    }
C
chengduoZH 已提交
941
  }
Y
yuyang18 已提交
942

Q
can run  
Qiao Longfei 已提交
943
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
944
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
945
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
946 947 948 949 950 951 952 953 954
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
955
  }
956 957 958 959 960 961 962 963

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
964 965
}

Y
Yancey1989 已提交
966
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
967
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
968
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
969
  // the initializing bcast, all vars would be bcast from device(0).
970
  for (auto &var : vars) {
X
Xin Pan 已提交
971
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
972
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
973 974 975 976
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
977
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
978
      VLOG(3) << "one in var not inited, return!";
979 980
      continue;
    }
981 982
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
983
#if defined(PADDLE_WITH_NCCL)
984
      std::vector<void *> buffers;
C
chengduo 已提交
985
      buffers.reserve(member_->places_.size());
986 987 988 989 990
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
991

Y
Yan Xu 已提交
992
        if (i == 0 && trainer_id == 0) {
993 994
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
995
          auto local_scope = member_->local_scopes_[i];
996
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
997
          t->Resize(dims);
998
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
999
        }
1000
        buffers.push_back(buffer);
1001
      }
1002

1003
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
1004 1005 1006 1007
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
1008
      {
1009
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
1010 1011
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
1012
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
1013 1014
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
1015
        }
1016
        nccl_ctxs->WaitAll();
1017
      }
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
      BKCLDataType data_type = BKCL_FLOAT;
      // BKCLDataType data_type = platform::ToBKCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }
        buffers.push_back(buffer);
      }

      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
            bkcl_group_start(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
          if (main_tensor.type() == framework::proto::VarType::INT64) {
            numel *= 2;
          }
          PADDLE_ENFORCE_EQ(
              bkcl_broadcast(bkcl_ctx.comm(), buffers[i], buffers[i], numel,
                             data_type, 0, NULL),
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
            bkcl_group_end(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
1075
#endif
1076 1077
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
1078
      for (size_t i = 1; i < member_->places_.size(); ++i) {
1079 1080
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
1081

Q
Qiao Longfei 已提交
1082
        auto copy_memory = [&] {
1083 1084 1085
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
1086 1087
        };

Q
Qiao Longfei 已提交
1088
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
1089 1090 1091 1092

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
1093 1094
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
1095 1096
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
1097
        } else {
Q
can run  
Qiao Longfei 已提交
1098
          share_memory();
1099
        }
Y
Yu Yang 已提交
1100
      }
Y
Stash  
Yu Yang 已提交
1101 1102
    }
  }
Y
Yu Yang 已提交
1103
}
Y
Yu Yang 已提交
1104

Z
Zhen Wang 已提交
1105 1106
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
1107
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
1108 1109
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
1110 1111 1112
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
1113 1114
  }
#endif
Y
Yu Yang 已提交
1115

X
Xin Pan 已提交
1116
  platform::RecordBlock b(0);
1117

1118 1119
  ResetHasFeedGuard reset_has_feed_guard(member_);

1120 1121
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
1122 1123

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
1124
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
1125
  return fetch_data;
Y
Yu Yang 已提交
1126
}
Y
Yu Yang 已提交
1127

Y
Yu Yang 已提交
1128 1129
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1145

1146
  size_t feed_num = 0;
Y
Yu Yang 已提交
1147 1148
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1149 1150 1151 1152 1153 1154
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1155
    for (auto &pair : map) {
1156
      bool is_persistable = member_->IsPersistable(pair.first);
1157 1158 1159
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1160 1161 1162 1163 1164
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
1165 1166 1167 1168
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
1181 1182 1183 1184
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
1185
  size_t num_places = member_->places_.size();
1186 1187 1188 1189 1190
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1191
  for (auto &pair : tensors) {
1192 1193 1194 1195
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
1196
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
1197
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1198 1199
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1200
      auto error_info = string::Sprintf(
1201 1202 1203
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
1204 1205 1206 1207 1208 1209
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1210
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1211 1212 1213 1214
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1215 1216 1217 1218 1219 1220
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
1221 1222 1223 1224 1225 1226
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1227
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1228 1229 1230 1231 1232 1233 1234 1235 1236
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
1237
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1238
      }
C
chengduo 已提交
1239
    }
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1266 1267 1268 1269 1270
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1271 1272
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1273 1274
    }
  }
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1291 1292
}

X
Xin Pan 已提交
1293 1294 1295 1296 1297 1298 1299
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1300
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1301
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1302
    const BuildStrategy &build_strategy) const {
1303 1304 1305
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1306

Y
Yancey1989 已提交
1307
  bool enable_parallel_graph = true;
1308

X
Xin Pan 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1322 1323 1324
    }
  }

1325
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1326
    if (build_strategy.enable_sequential_execution_ ||
1327
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1328
      enable_parallel_graph = false;
1329 1330 1331 1332 1333 1334 1335 1336 1337
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1338
  return enable_parallel_graph;
1339 1340
}

1341 1342 1343 1344
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1345
}  // namespace framework
Y
Yang Yang 已提交
1346
}  // namespace paddle
S
sneaxiy 已提交
1347

S
sneaxiy 已提交
1348
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1349
USE_PASS(eager_deletion_pass);
1350
USE_PASS(buffer_shared_inplace_pass);
1351
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1352
USE_PASS(inplace_addto_op_pass);