parallel_executor.cc 22.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28 29
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
30
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

78
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
91
      }
S
sneaxiy 已提交
92
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
93 94 95
    }
  }

D
dzhwinter 已提交
96
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
97 98
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
99
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
100
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
101

P
peizhilin 已提交
102
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
103
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
104
#endif
C
chengduoZH 已提交
105 106
  bool own_local_scope_;
  bool use_cuda_;
107
  bool use_all_reduce_;
108
  size_t nranks_;
S
sneaxiy 已提交
109

S
sneaxiy 已提交
110 111 112
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
113 114 115
  std::vector<ir::ReferenceCountMap> global_ref_cnts_;
  std::vector<ir::AtomicReferenceCountMap> runtime_ref_cnts_;
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
116 117
};

118 119
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
120 121 122 123 124
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
125
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
126
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
127 128
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
129 130
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
131
      } else {
S
sneaxiy 已提交
132 133
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134 135
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
136
    } else {
S
sneaxiy 已提交
137
#endif
S
sneaxiy 已提交
138 139 140 141 142 143 144
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
145 146 147 148
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
149
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
150 151
  }

S
sneaxiy 已提交
152
  if (!gcs_.empty()) {
153
    std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;
S
sneaxiy 已提交
154 155 156

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
157 158
    ref_cnt_pass->SetNotOwned(ir::kGlobalReferenceCount, &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
159
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
160 161 162 163
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
164
    eager_deletion_pass->SetNotOwned(ir::kRuntimeReferenceCount,
S
sneaxiy 已提交
165
                                     &runtime_ref_cnts_);
166 167
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
168
                                     &last_live_ops_of_vars);
169
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
170
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
171 172 173 174 175
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

176 177 178 179
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
180 181 182 183 184 185 186 187
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
188
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
189
  member_->global_scope_ = scope;
190
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
191
  member_->build_strategy_ = build_strategy;
192 193
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
194
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
195 196 197 198
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
199 200
  }

201
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
202
  // Create local scopes
203
  if (local_scopes.empty()) {
C
chengduoZH 已提交
204
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
205 206
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
207
      member_->local_scopes_.emplace_back(&scope->NewScope());
208 209
    }
  } else {
C
chengduoZH 已提交
210
    member_->own_local_scope_ = false;
211 212
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
213
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
214
    }
Y
Yu Yang 已提交
215 216
  }

Q
Qiao Longfei 已提交
217
  std::vector<ir::Graph *> graphs;
Q
Qiao Longfei 已提交
218 219 220
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
221
    graphs.push_back(graph);
D
dongdaxiang 已提交
222
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
223 224 225 226
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
227
  }
Q
Qiao Longfei 已提交
228

Y
Yancey1989 已提交
229 230 231
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
232 233
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
234 235 236 237
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
238

C
chengduoZH 已提交
239
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
240
// Bcast Parameters to all GPUs
P
peizhilin 已提交
241
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
242 243 244
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
245
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
246
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
247
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
248
    }
249
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
250 251 252 253
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
254
      }
C
chengduoZH 已提交
255
    }
Y
Yancey1989 已提交
256

C
chengduoZH 已提交
257
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
258 259
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
260

W
Wu Yi 已提交
261 262 263
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
264
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
265 266 267 268 269 270 271
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
272 273 274 275 276
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
277 278 279 280 281 282 283
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
284
    }
C
chengduoZH 已提交
285 286
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
287
#endif
C
chengduoZH 已提交
288
  }
Y
Yan Xu 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
304
  }
Q
Qiao Longfei 已提交
305
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
306

Q
Qiao Longfei 已提交
307 308 309
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
310
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
311
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
312
    VLOG(3) << "use local async mode";
313 314 315
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_, member_->nccl_ctxs_.get());
D
dongdaxiang 已提交
316
    for (size_t i = 1; i < member_->places_.size(); ++i) {
317 318 319
      graphs[i] =
          build_strategy.Apply(graphs[i], {member_->places_[i]}, loss_var_name,
                               {member_->local_scopes_[i]}, 1,
Q
Qiao Longfei 已提交
320
                               member_->use_cuda_, member_->nccl_ctxs_.get());
321
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
322
    }
Q
Qiao Longfei 已提交
323
  } else {
324 325 326
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_, member_->nccl_ctxs_.get());
Q
Qiao Longfei 已提交
327
  }
C
chengduoZH 已提交
328
#else
Q
Qiao Longfei 已提交
329
  if (build_strategy.async_mode_) {
Q
Qiao Longfei 已提交
330
    VLOG(3) << "use local async mode";
331 332 333
    graph = build_strategy.Apply(graph, {member_->places_[0]}, loss_var_name,
                                 {member_->local_scopes_[0]}, 1,
                                 member_->use_cuda_);
334
    for (size_t i = 1; i < member_->places_.size(); ++i) {
335 336
      graphs[i] = build_strategy.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
337
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
338
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
339
    }
Q
can run  
Qiao Longfei 已提交
340
  } else {
341 342 343
    graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                                 member_->local_scopes_, member_->nranks_,
                                 member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
344
  }
X
Xin Pan 已提交
345

Y
Yu Yang 已提交
346
#endif
Y
Yancey1989 已提交
347
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
348 349
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
350
  if (max_memory_size >= 0) {
351 352
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
353 354
  }

Q
Qiao Longfei 已提交
355 356
  async_graphs[0] = graph;

357 358
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
359
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
360 361 362 363 364 365
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
366 367
    }
  }
Y
Yancey1989 已提交
368

W
Wu Yi 已提交
369 370
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
371
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
372 373 374 375
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
376
          << ir::GraphNum(*graph)
C
chengduo 已提交
377 378 379 380 381
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
382 383
  }

Q
Qiao Longfei 已提交
384
  if (build_strategy.async_mode_) {
Q
can run  
Qiao Longfei 已提交
385 386
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
Q
Qiao Longfei 已提交
387
        exec_strategy, member_->local_scopes_, member_->places_, async_graphs));
Q
can run  
Qiao Longfei 已提交
388 389
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
390
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
391 392
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
393
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
394
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
395 396 397 398
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
399
  } else {
Y
Yancey1989 已提交
400
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
401
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
402
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
403
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
404
    } else {
Q
can run  
Qiao Longfei 已提交
405
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
406
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
X
Xin Pan 已提交
407
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
408
    }
C
chengduoZH 已提交
409
  }
Y
yuyang18 已提交
410

Q
can run  
Qiao Longfei 已提交
411
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Q
Qiao Longfei 已提交
412 413 414 415 416
  if (!build_strategy.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, std::move(var_infos),
        member_->places_, std::move(member_->executor_)));
  }
Y
Yu Yang 已提交
417 418
}

Y
Yancey1989 已提交
419
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
420
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
421
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
422
  // the initializing bcast, all vars would be bcast from device(0).
423
  for (auto &var : vars) {
X
Xin Pan 已提交
424
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
425
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
426 427 428 429
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
430
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
431
      VLOG(3) << "one in var not inited, return!";
432 433
      continue;
    }
434 435
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
436
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
437
      std::vector<void *> buffers;
C
chengduo 已提交
438
      buffers.reserve(member_->places_.size());
439 440 441 442 443
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
444

Y
Yan Xu 已提交
445
        if (i == 0 && trainer_id == 0) {
446 447
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
448
          auto local_scope = member_->local_scopes_[i];
449
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
450
          t->Resize(dims);
451
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
452
        }
453
        buffers.push_back(buffer);
454
      }
455

456 457 458 459 460 461
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
462 463
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
464
        }
465
        member_->nccl_ctxs_->WaitAll();
466
      }
C
chengduoZH 已提交
467 468 469
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
470 471
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
472
      for (size_t i = 1; i < member_->places_.size(); ++i) {
473 474
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
475

Q
Qiao Longfei 已提交
476
        auto copy_memory = [&] {
477 478 479
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
480 481
        };

Q
Qiao Longfei 已提交
482
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
483 484 485 486 487 488 489

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
490
        } else {
Q
can run  
Qiao Longfei 已提交
491
          share_memory();
492
        }
Y
Yu Yang 已提交
493
      }
Y
Stash  
Yu Yang 已提交
494 495
    }
  }
Y
Yu Yang 已提交
496
}
Y
Yu Yang 已提交
497

Y
Yu Yang 已提交
498 499
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
500 501 502
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
503 504
  }
#endif
Y
Yu Yang 已提交
505

X
Xin Pan 已提交
506
  platform::RecordBlock b(0);
S
sneaxiy 已提交
507 508
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
509
  }
S
sneaxiy 已提交
510 511 512
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
513
}
Y
Yu Yang 已提交
514

Y
Yu Yang 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
534 535 536 537 538
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
539 540
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
541
      auto t =
Y
Yu Yang 已提交
542
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
543 544
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
545 546 547 548
    }
  }
}

X
Xin Pan 已提交
549 550 551 552 553 554 555
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

556
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
557
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
558
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
559
  if (!FLAGS_enable_parallel_graph) return false;
560

Y
Yancey1989 已提交
561
  bool enable_parallel_graph = true;
562

X
Xin Pan 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
576 577 578 579 580
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
581 582 583
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
584
  return enable_parallel_graph;
585 586
}

Y
Yu Yang 已提交
587
}  // namespace framework
Y
Yang Yang 已提交
588
}  // namespace paddle
S
sneaxiy 已提交
589

S
sneaxiy 已提交
590
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
591
USE_PASS(eager_deletion_pass);