parallel_executor.cc 33.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_bool(use_ngraph);

37 38
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
39
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
40
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
41
#endif
Y
Yu Yang 已提交
42
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
43 44
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
45
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
46
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
47

Y
Yang Yang 已提交
48
namespace paddle {
Y
Yu Yang 已提交
49 50
namespace framework {

Y
Yu Yang 已提交
51
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
52
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
53
static bool gProfileStarted = false;
Y
Yu Yang 已提交
54
#endif
55

Y
Yu Yang 已提交
56 57 58
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
59
      : places_(places) {
Y
Yu Yang 已提交
60
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
61 62
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
63
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
64 65 66
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
67
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
68 69 70 71
#endif
      });
    }
  }
Y
Yu Yang 已提交
72

73 74 75 76 77 78 79 80 81 82 83
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
84

85
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
86 87 88

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  /**
   * NOTE(zengjinle): the feeded variables of users should not be reused,
   * because users may feed them into another network. Changing the feeded
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
   *  - FeedTensorsIntoLocalScopes: this method would share memory of feeded
   *                                variables, so we have to skip these.
   *
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of feeded
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
129 130
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
131 132 133 134 135 136 137 138 139 140 141 142
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
143
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
144 145 146
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
147 148
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
149 150 151 152
      }

      flat_nccl_ids.push_back(nccl_id);

153 154
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
155 156 157 158 159 160
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
161 162
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
163 164 165 166 167 168 169 170 171 172 173
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

174 175
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
176 177

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
178 179 180 181 182 183 184 185
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
186 187 188 189 190 191 192 193 194

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
195

196 197 198 199
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
200 201
    }
  }
202

203
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
204 205 206 207 208 209 210 211 212 213 214
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

230 231
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
232
    InitNCCLCtxs(scope, *bst);
233
  }
234 235
#endif

236 237 238 239 240
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
241
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
242 243
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
244
  std::vector<Scope *> local_exec_scopes_;
245
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
246
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
247

248 249
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
250
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
251
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
252
#endif
C
chengduoZH 已提交
253 254
  bool own_local_scope_;
  bool use_cuda_;
255
  bool use_all_reduce_;
256
  size_t nranks_;
S
sneaxiy 已提交
257

258
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
259
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
260 261
};

262
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
263 264 265 266 267 268 269
  if (FLAGS_use_ngraph) {
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, memory optimization strategy is "
           "disabled in ParallelExecutor";
    return graph;
  }

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
287 288
    LOG_FIRST_N(INFO, 1) << "Inplace strategy is enabled, when "
                            "build_strategy.enable_inplace = True";
289 290
  }

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  if (build_strategy_.memory_optimize_.get()) {
307 308 309 310 311 312 313 314 315 316
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
317 318 319
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
320
  }
321

322
  if (!is_gc_enabled) {
323 324 325 326
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
327 328 329 330 331
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
332
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
333
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
334 335
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
336 337
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
338
      } else {
S
sneaxiy 已提交
339 340
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
341 342
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
343
    } else {
S
sneaxiy 已提交
344
#endif
S
sneaxiy 已提交
345 346 347 348 349 350 351
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
352 353 354 355
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
356
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
357 358
  }

S
sneaxiy 已提交
359
  if (!gcs_.empty()) {
S
sneaxiy 已提交
360 361
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
362 363
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
364 365
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
366
                                     &last_live_ops_of_vars);
367
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
368
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
369
    VLOG(10) << "EagerDeletionPass Applied";
370 371 372
    LOG_FIRST_N(INFO, 1) << "Garbage collection strategy is enabled, when "
                         << "FLAGS_eager_delete_tensor_gb = "
                         << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
373 374 375 376
  }
  return graph;
}

377 378 379 380
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
395 396 397 398 399 400 401 402
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
403
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
404
  member_->global_scope_ = scope;
405
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
406
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
407 408
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
409
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
410 411 412 413 414 415 416
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
417 418 419 420 421
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
422

423
  LOG(INFO) << string::Sprintf(
C
chengduo 已提交
424 425 426 427 428
      "The number of %s, which is used in ParallelExecutor, is %lu. And "
      "the Program will be copied %lu copies",
      (member_->use_cuda_ ? "CUDAPlace" : "CPUPlace"), places.size(),
      places.size());

429
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
430
  // Create local scopes
431
  if (local_scopes.empty()) {
C
chengduoZH 已提交
432
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
433 434
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
435
      member_->local_scopes_.emplace_back(&scope->NewScope());
436 437
    }
  } else {
C
chengduoZH 已提交
438
    member_->own_local_scope_ = false;
439 440
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
441
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
442
    }
Y
Yu Yang 已提交
443 444
  }

Q
Qiao Longfei 已提交
445
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
446
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
447 448
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
449
    graphs.push_back(graph);
D
dongdaxiang 已提交
450
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
451 452 453 454
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
455
  }
Q
Qiao Longfei 已提交
456

Y
Yancey1989 已提交
457 458 459
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
460 461 462 463
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
464 465 466 467
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
468

469
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
470
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
471
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
472

W
Wu Yi 已提交
473 474 475
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
476
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
477 478 479
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
480 481
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
482
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
483 484 485
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
486
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
487
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
488
    }
Y
Yu Yang 已提交
489
#endif
C
chengduoZH 已提交
490
  }
Y
Yan Xu 已提交
491 492
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
493
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
494 495 496 497 498 499 500 501 502
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
503
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
504
  if (need_broadcast()) {
C
chengduo 已提交
505
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
506
  }
507

Q
Qiao Longfei 已提交
508
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
509

Q
Qiao Longfei 已提交
510 511 512
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
513
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
514
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
515
    VLOG(3) << "use local async mode";
C
chengduo 已提交
516 517 518 519
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
520
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
521 522 523 524
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
525
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
526
    }
Q
Qiao Longfei 已提交
527
  } else {
C
chengduo 已提交
528 529 530
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
531
  }
C
chengduoZH 已提交
532
#else
C
chengduo 已提交
533
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
534
    VLOG(3) << "use local async mode";
C
chengduo 已提交
535 536 537
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
538
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
539
      graphs[i] = member_->build_strategy_.Apply(
540
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
541
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
542
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
543
    }
Q
can run  
Qiao Longfei 已提交
544
  } else {
C
chengduo 已提交
545 546 547
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
548
  }
Y
Yu Yang 已提交
549
#endif
550

551
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
552

Q
Qiao Longfei 已提交
553 554
  async_graphs[0] = graph;

555 556
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
557
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
558 559 560 561 562 563
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
564 565 566

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
567 568
    }
  }
Y
Yancey1989 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
582
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
583 584
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
585 586 587
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
588
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
589
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
590
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
591 592
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
593 594 595 596 597
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
598 599 600 601
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
602
  } else {
Y
Yancey1989 已提交
603
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
604
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
605
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
606 607
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
608
    } else {
Q
can run  
Qiao Longfei 已提交
609
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
610
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
611 612
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
613
    }
614
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
615
  }
Y
yuyang18 已提交
616

Q
can run  
Qiao Longfei 已提交
617
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
618
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
619
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
620 621 622 623 624 625 626 627 628
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
629
  }
Y
Yu Yang 已提交
630 631
}

Y
Yancey1989 已提交
632
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
633
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
634
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
635
  // the initializing bcast, all vars would be bcast from device(0).
636
  for (auto &var : vars) {
X
Xin Pan 已提交
637
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
638
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
639 640 641 642
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
643
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
644
      VLOG(3) << "one in var not inited, return!";
645 646
      continue;
    }
647 648
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
649
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
650
      std::vector<void *> buffers;
C
chengduo 已提交
651
      buffers.reserve(member_->places_.size());
652 653 654 655 656
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
657

Y
Yan Xu 已提交
658
        if (i == 0 && trainer_id == 0) {
659 660
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
661
          auto local_scope = member_->local_scopes_[i];
662
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
663
          t->Resize(dims);
664
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
665
        }
666
        buffers.push_back(buffer);
667
      }
668

669 670 671
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
672
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
673 674
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
675
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
676 677
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
678
        }
679
        nccl_ctxs->WaitAll();
680
      }
C
chengduoZH 已提交
681
#endif
682 683
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
684
      for (size_t i = 1; i < member_->places_.size(); ++i) {
685 686
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
687

Q
Qiao Longfei 已提交
688
        auto copy_memory = [&] {
689 690 691
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
692 693
        };

Q
Qiao Longfei 已提交
694
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
695 696 697 698 699 700 701

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
702
        } else {
Q
can run  
Qiao Longfei 已提交
703
          share_memory();
704
        }
Y
Yu Yang 已提交
705
      }
Y
Stash  
Yu Yang 已提交
706 707
    }
  }
Y
Yu Yang 已提交
708
}
Y
Yu Yang 已提交
709

710 711
FeedFetchList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
712
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
713 714 715
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
716 717
  }
#endif
Y
Yu Yang 已提交
718

X
Xin Pan 已提交
719
  platform::RecordBlock b(0);
720 721 722

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
723 724

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
725
  auto fetch_data = member_->executor_->Run(fetch_tensors);
726
  return fetch_data;
Y
Yu Yang 已提交
727
}
Y
Yu Yang 已提交
728

Y
Yu Yang 已提交
729 730 731 732 733 734 735
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
736
      bool is_persistable = member_->IsPersistable(pair.first);
737 738 739
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
740 741 742 743 744
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
745 746 747 748 749 750 751 752
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
753
  size_t num_places = member_->places_.size();
754
  for (auto &pair : tensors) {
755 756 757 758
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
759
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
760 761
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
    if (!is_persistable && num_places != lod_tensors.size()) {
C
chengduo 已提交
762
      auto error_info = string::Sprintf(
763 764 765
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
766 767 768 769 770 771 772
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
      if (lod_tensors.size() != num_places) {
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
799
    }
800

801
    for (size_t j = 0; j < num_places; ++j) {
802 803 804 805 806
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
807 808
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
809 810 811 812
    }
  }
}

X
Xin Pan 已提交
813 814 815 816 817 818 819
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

820
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
821
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
822
    const BuildStrategy &build_strategy) const {
823 824 825
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
826

Y
Yancey1989 已提交
827
  bool enable_parallel_graph = true;
828

X
Xin Pan 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
842 843 844
    }
  }

845
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
846
    if (build_strategy.enable_sequential_execution_ ||
847
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
848
      enable_parallel_graph = false;
849 850 851 852 853 854 855 856 857
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
858
  return enable_parallel_graph;
859 860
}

Y
Yu Yang 已提交
861
}  // namespace framework
Y
Yang Yang 已提交
862
}  // namespace paddle
S
sneaxiy 已提交
863

S
sneaxiy 已提交
864
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
865
USE_PASS(eager_deletion_pass);
866
USE_PASS(buffer_shared_inplace_pass);
867
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);