parallel_executor.cc 39.6 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
37
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
38
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
39
#endif
Y
Yu Yang 已提交
40
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
41 42
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
43
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
44
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
45

Y
Yang Yang 已提交
46
namespace paddle {
Y
Yu Yang 已提交
47 48
namespace framework {

Y
Yu Yang 已提交
49
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
50
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
51
static bool gProfileStarted = false;
Y
Yu Yang 已提交
52
#endif
53

Y
Yu Yang 已提交
54 55
class ParallelExecutorPrivate {
 public:
56 57 58
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
59
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
60 61
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
62
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
63 64 65
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
66
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
67 68 69 70
#endif
      });
    }
  }
Y
Yu Yang 已提交
71

72 73 74 75 76 77 78 79 80 81 82
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  void InitReaderDeviceCount(ir::Graph *graph) const {
    auto pass =
        ir::PassRegistry::Instance().Get("init_reader_device_count_pass");
    pass->SetNotOwned<const Scope>(details::kGlobalScope, global_scope_);
    pass->SetNotOwned<const std::vector<platform::Place>>(details::kPlaces,
                                                          &places_);
    pass->Apply(graph);
  }

  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

97
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
98 99 100

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

101
  /**
T
tianshuo78520a 已提交
102 103
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
104 105 106 107 108 109
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
110
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
111 112
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
113
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
114 115 116 117 118 119 120 121 122 123
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

124
#if defined(PADDLE_WITH_NCCL)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
141 142
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
143 144 145 146 147 148 149 150 151 152 153 154
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
155
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
156 157 158
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
159 160
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
161 162 163 164
      }

      flat_nccl_ids.push_back(nccl_id);

165 166
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
167 168 169 170 171 172
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
173 174
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
175 176 177 178 179 180 181 182 183 184 185
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

186 187
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
188 189

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
190 191 192 193 194 195 196 197
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
198 199 200 201 202 203 204 205 206

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
207

208 209 210 211
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
212 213
    }
  }
214

215
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
216 217 218 219 220 221 222 223 224 225 226
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

242 243
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
244
    InitNCCLCtxs(scope, *bst);
245
  }
246 247
#endif

248 249 250 251 252
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
253
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
254 255
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
256
  std::vector<Scope *> local_exec_scopes_;
257
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
258
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
259

260 261
  std::unordered_map<std::string, bool> is_persistable_;

262
#if defined(PADDLE_WITH_NCCL)
263
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
264
#endif
C
chengduoZH 已提交
265 266
  bool own_local_scope_;
  bool use_cuda_;
267
  bool use_all_reduce_;
268
  size_t nranks_;
S
sneaxiy 已提交
269

270
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
271
  ir::GarbageCollectorMap gcs_;
272 273

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
274 275
};

276 277 278 279 280 281 282 283 284 285
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

286
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
324 325
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
326 327
  }

328
  if (build_strategy_.memory_optimize_.get()) {
329 330 331 332 333 334 335 336 337 338
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
339 340 341
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
342
  }
343

344
  if (!is_gc_enabled) {
345 346 347 348
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
349 350 351 352 353
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
354
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
355
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
356 357
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
358 359
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
360
      } else {
S
sneaxiy 已提交
361 362
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
363 364
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
365
    } else {
S
sneaxiy 已提交
366
#endif
S
sneaxiy 已提交
367 368 369 370 371 372 373
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
374 375 376 377
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
378
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
379 380
  }

S
sneaxiy 已提交
381
  if (!gcs_.empty()) {
S
sneaxiy 已提交
382 383
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
384 385
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
386 387
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
388
                                     &last_live_ops_of_vars);
389
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
390
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
391
    VLOG(10) << "EagerDeletionPass Applied";
392 393 394
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
395 396 397 398
  }
  return graph;
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

414 415
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

416 417 418 419
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
434 435 436 437 438 439 440 441
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
442 443
    : member_(new ParallelExecutorPrivate(places, scope)) {
  member_->InitReaderDeviceCount(graph);
444
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
445
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
446 447
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
448
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
449 450 451 452 453 454 455
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
456 457 458 459 460
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
461

462 463 464 465 466 467 468 469 470 471
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      places.size(), 1,
      platform::errors::PermissionDenied(
          "Your machine has multiple cards, "
          "but the WITH_NCCL option is not turned on during compilation, "
          "and you cannot use multi-card training or prediction. "
          "Please recompile and turn on the WITH_NCCL option."));
#endif

472
  VLOG(1) << string::Sprintf(
473 474 475
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
476

477
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
478
  // Create local scopes
479
  if (local_scopes.empty()) {
C
chengduoZH 已提交
480
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
481 482
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
483
      member_->local_scopes_.emplace_back(&scope->NewScope());
484 485
    }
  } else {
C
chengduoZH 已提交
486
    member_->own_local_scope_ = false;
487 488
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
489
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
490
    }
Y
Yu Yang 已提交
491 492
  }

Q
Qiao Longfei 已提交
493
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
494
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
495 496
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
497
    graphs.push_back(graph);
D
dongdaxiang 已提交
498
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
499 500 501 502
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
503
  }
Q
Qiao Longfei 已提交
504

Y
Yancey1989 已提交
505 506 507
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
508 509 510 511
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
512 513 514 515
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
516

517
  if (member_->use_cuda_ && member_->nranks_ > 1) {
518
#if defined(PADDLE_WITH_NCCL)
519
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
520

W
Wu Yi 已提交
521 522 523
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
524
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
525 526 527
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
528 529
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
530
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
531 532 533
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
534
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
535
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
536
    }
Y
Yu Yang 已提交
537
#endif
C
chengduoZH 已提交
538
  }
Y
Yan Xu 已提交
539 540
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
541
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
542 543 544 545 546 547 548 549 550
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
551
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
552
  if (need_broadcast()) {
C
chengduo 已提交
553
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
554
  }
555

Q
Qiao Longfei 已提交
556
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
557

Q
Qiao Longfei 已提交
558 559 560
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
561
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
562
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
563
    VLOG(3) << "use local async mode";
C
chengduo 已提交
564 565 566 567
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
568
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
569 570 571 572
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
573
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
574
    }
Q
Qiao Longfei 已提交
575
  } else {
C
chengduo 已提交
576 577 578
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
579
  }
C
chengduoZH 已提交
580
#else
C
chengduo 已提交
581
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
582
    VLOG(3) << "use local async mode";
C
chengduo 已提交
583 584 585
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
586
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
587
      graphs[i] = member_->build_strategy_.Apply(
588
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
589
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
590
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
591
    }
Q
can run  
Qiao Longfei 已提交
592
  } else {
C
chengduo 已提交
593 594 595
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
596
  }
Y
Yu Yang 已提交
597
#endif
598

599
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
600

Q
Qiao Longfei 已提交
601 602
  async_graphs[0] = graph;

603 604
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
605
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
606 607 608 609 610 611
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
612 613 614

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
615 616
    }
  }
Y
Yancey1989 已提交
617

618 619 620 621 622 623 624 625 626 627 628 629
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
630
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
631 632
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
633 634 635
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
636
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
637
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
638
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
639 640
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
641 642 643
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

644 645 646 647 648
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
649 650 651 652 653 654 655 656

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
657 658 659 660
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
661
  } else {
662 663 664 665 666 667
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
668
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
669 670 671 672 673 674 675 676
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
677
    } else {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
693
    }
C
chengduoZH 已提交
694
  }
Y
yuyang18 已提交
695

Q
can run  
Qiao Longfei 已提交
696
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
697
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
698
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
699 700 701 702 703 704 705 706 707
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
708
  }
Y
Yu Yang 已提交
709 710
}

Y
Yancey1989 已提交
711
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
712
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
713
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
714
  // the initializing bcast, all vars would be bcast from device(0).
715
  for (auto &var : vars) {
X
Xin Pan 已提交
716
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
717
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
718 719 720 721
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
722
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
723
      VLOG(3) << "one in var not inited, return!";
724 725
      continue;
    }
726 727
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
728
#if defined(PADDLE_WITH_NCCL)
729
      std::vector<void *> buffers;
C
chengduo 已提交
730
      buffers.reserve(member_->places_.size());
731 732 733 734 735
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
736

Y
Yan Xu 已提交
737
        if (i == 0 && trainer_id == 0) {
738 739
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
740
          auto local_scope = member_->local_scopes_[i];
741
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
742
          t->Resize(dims);
743
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
744
        }
745
        buffers.push_back(buffer);
746
      }
747

748 749 750
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
751
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
752 753
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
754
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
755 756
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
757
        }
758
        nccl_ctxs->WaitAll();
759
      }
C
chengduoZH 已提交
760
#endif
761 762
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
763
      for (size_t i = 1; i < member_->places_.size(); ++i) {
764 765
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
766

Q
Qiao Longfei 已提交
767
        auto copy_memory = [&] {
768 769 770
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
771 772
        };

Q
Qiao Longfei 已提交
773
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
774 775 776 777 778 779 780

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
781
        } else {
Q
can run  
Qiao Longfei 已提交
782
          share_memory();
783
        }
Y
Yu Yang 已提交
784
      }
Y
Stash  
Yu Yang 已提交
785 786
    }
  }
Y
Yu Yang 已提交
787
}
Y
Yu Yang 已提交
788

Z
Zhen Wang 已提交
789 790
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
791
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
792 793 794
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
795 796
  }
#endif
Y
Yu Yang 已提交
797

X
Xin Pan 已提交
798
  platform::RecordBlock b(0);
799

800 801
  ResetHasFeedGuard reset_has_feed_guard(member_);

802 803
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
804 805

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
806
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
807
  return fetch_data;
Y
Yu Yang 已提交
808
}
Y
Yu Yang 已提交
809

Y
Yu Yang 已提交
810 811
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
827

828
  size_t feed_num = 0;
Y
Yu Yang 已提交
829 830
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
831 832 833 834 835 836
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
837
    for (auto &pair : map) {
838
      bool is_persistable = member_->IsPersistable(pair.first);
839 840 841
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
842 843 844 845 846
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
847 848 849 850
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
851 852 853 854 855 856 857 858 859 860 861 862

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
863 864 865 866
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
867
  size_t num_places = member_->places_.size();
868 869 870 871 872
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

873
  for (auto &pair : tensors) {
874 875 876 877
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
878
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
879
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
880 881
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
882
      auto error_info = string::Sprintf(
883 884 885
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
886 887 888 889 890 891 892
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
893 894 895 896 897 898 899 900 901 902 903 904 905 906
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
907
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
908 909 910 911 912 913 914 915 916 917 918
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
919
    }
920

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
946 947 948 949 950
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
951 952
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
953 954
    }
  }
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
971 972
}

X
Xin Pan 已提交
973 974 975 976 977 978 979
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

980
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
981
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
982
    const BuildStrategy &build_strategy) const {
983 984 985
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
986

Y
Yancey1989 已提交
987
  bool enable_parallel_graph = true;
988

X
Xin Pan 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1002 1003 1004
    }
  }

1005
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
1006
    if (build_strategy.enable_sequential_execution_ ||
1007
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1008
      enable_parallel_graph = false;
1009 1010 1011 1012 1013 1014 1015 1016 1017
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1018
  return enable_parallel_graph;
1019 1020
}

1021 1022 1023 1024
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1025
}  // namespace framework
Y
Yang Yang 已提交
1026
}  // namespace paddle
S
sneaxiy 已提交
1027

S
sneaxiy 已提交
1028
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1029
USE_PASS(eager_deletion_pass);
1030
USE_PASS(buffer_shared_inplace_pass);
1031
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1032
USE_PASS(init_reader_device_count_pass);