parallel_executor.cc 21.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
109
  size_t nranks_;
S
sneaxiy 已提交
110

S
sneaxiy 已提交
111 112 113 114 115 116
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
117 118
};

S
sneaxiy 已提交
119 120 121 122 123 124 125
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
126
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
127
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
128 129
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
130 131
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
132
      } else {
S
sneaxiy 已提交
133 134
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
135 136
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
137
    } else {
S
sneaxiy 已提交
138
#endif
S
sneaxiy 已提交
139 140 141 142 143 144 145
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
146 147 148 149
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
150
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
151 152
  }

S
sneaxiy 已提交
153
  if (!gcs_.empty()) {
S
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

180 181 182 183
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
184
ParallelExecutor::ParallelExecutor(
185
    const std::vector<platform::Place> &places,
186
    const std::unordered_set<std::string> &bcast_vars,
X
Xin Pan 已提交
187
    const std::vector<ir::Graph *> &graphs, const std::string &loss_var_name,
Y
yuyang18 已提交
188
    Scope *scope, const std::vector<Scope *> &local_scopes,
189
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
190
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
191
  member_->global_scope_ = scope;
192
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
193
  member_->build_strategy_ = build_strategy;
194 195
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
196
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
197 198 199 200
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
201 202
  }

203
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
204
  // Create local scopes
205
  if (local_scopes.empty()) {
C
chengduoZH 已提交
206
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
207 208
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
209
      member_->local_scopes_.emplace_back(&scope->NewScope());
210 211
    }
  } else {
C
chengduoZH 已提交
212
    member_->own_local_scope_ = false;
213 214
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
215
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
216
    }
Y
Yu Yang 已提交
217 218
  }

X
Xin Pan 已提交
219 220 221
<<<<<<< HEAD
  std::unique_ptr<ir::Graph> temp_owned_graph(graph);

Y
Yancey1989 已提交
222 223 224 225
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
X
Xin Pan 已提交
226
      EnableParallelGraphExecution(*temp_owned_graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
227 228 229 230
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
X
Xin Pan 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
=======
  // TODO(panyx0718): Update pass interface so we don't need this here.
  std::vector<std::unique_ptr<ir::Graph>> temp_owned_graphs;
  for (ir::Graph *g : graphs) {
    temp_owned_graphs.emplace_back(g);
  }
<<<<<<< HEAD
>>>>>>> fix parallel graph mode program

=======
  bool parallel_graphs = (temp_owned_graphs.size() > 1);
  if (parallel_graphs) {
    PADDLE_ENFORCE_EQ(temp_owned_graphs.size(), places.size());
  }
  VLOG(1) << "Enable ParallelGraph Execution: " << parallel_graphs;
>>>>>>> polish
Y
Yancey1989 已提交
247

C
chengduoZH 已提交
248
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
249
// Bcast Parameters to all GPUs
P
peizhilin 已提交
250
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
251 252 253
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
254
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
255
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
256
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
257
    }
X
Xin Pan 已提交
258
    if (parallel_graphs && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
259 260 261 262
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
263
      }
C
chengduoZH 已提交
264
    }
Y
Yancey1989 已提交
265

C
chengduoZH 已提交
266
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
267 268
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
269 270
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
271
#endif
C
chengduoZH 已提交
272 273
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
274
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
275
  }
Y
Yancey1989 已提交
276
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
277

Y
Yancey1989 已提交
278 279
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
X
Xin Pan 已提交
280
<<<<<<< HEAD
Y
Yancey1989 已提交
281
  std::unique_ptr<ir::Graph> graph;
P
peizhilin 已提交
282
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
283 284

  temp_owned_graph = build_strategy.Apply(std::move(temp_owned_graph), member_->places_, loss_var_name,
Y
Yancey1989 已提交
285 286
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
C
chengduoZH 已提交
287
#else
X
Xin Pan 已提交
288
  temp_owned_graph = build_strategy.Apply(std::move(temp_owned_graph), member_->places_, loss_var_name,
Y
Yancey1989 已提交
289 290
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_);
X
Xin Pan 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

=======
  std::vector<ir::Graph *> compiled_graphs;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  if (parallel_graphs) {
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      auto temp_owned_graph = build_strategy.Apply(
          std::move(temp_owned_graphs[i]), {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_,
          member_->nccl_ctxs_.get());
      compiled_graphs.push_back(temp_owned_graph.release());
    }
  } else {
    auto temp_owned_graph = build_strategy.Apply(
        std::move(temp_owned_graphs[0]), member_->places_, loss_var_name,
        member_->local_scopes_, member_->nranks_, member_->use_cuda_,
        member_->nccl_ctxs_.get());
    compiled_graphs.push_back(temp_owned_graph.release());
  }
#else
  auto temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graphs[0]), member_->places_, loss_var_name,
      member_->local_scopes_, member_->nranks_, member_->use_cuda_);
  compiled_graphs.push_back(temp_owned_graph.release());
>>>>>>> fix parallel graph mode program
Y
Yu Yang 已提交
316
#endif
Y
Yancey1989 已提交
317
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
318 319
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
320
  if (max_memory_size >= 0) {
X
Xin Pan 已提交
321
<<<<<<< HEAD
Y
Yancey1989 已提交
322
    graph = member_->PrepareGCAndRefCnts(std::move(graph),
X
Xin Pan 已提交
323 324 325 326 327 328 329 330 331 332 333
                                         static_cast<size_t>(max_memory_size)).release();
=======
    for (size_t i = 0; i < graphs.size(); ++i) {
      compiled_graphs[i] =
          member_
              ->PrepareGCAndRefCnts(
                  std::unique_ptr<ir::Graph>(compiled_graphs[i]),
                  static_cast<size_t>(max_memory_size))
              .release();
    }
>>>>>>> fix parallel graph mode program
Y
Yancey1989 已提交
334 335
  }

336 337
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
338
  std::vector<details::VariableInfo> var_infos;
X
Xin Pan 已提交
339
<<<<<<< HEAD
Y
Yancey1989 已提交
340 341 342 343 344 345
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
X
Xin Pan 已提交
346 347 348 349 350 351 352 353 354 355
=======
  for (auto &graph : compiled_graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
>>>>>>> fix parallel graph mode program
Y
Yancey1989 已提交
356 357
    }
  }
Y
Yancey1989 已提交
358

W
Wu Yi 已提交
359 360
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
X
Xin Pan 已提交
361
<<<<<<< HEAD
Y
Yancey1989 已提交
362
    size_t graph_num = ir::GraphNum(*graph);
X
Xin Pan 已提交
363 364 365
=======
    size_t graph_num = ir::GraphNum(*compiled_graphs[0]);
>>>>>>> fix parallel graph mode program
C
chengduo 已提交
366 367 368 369
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
X
Xin Pan 已提交
370
<<<<<<< HEAD
Y
Yancey1989 已提交
371
          << ir::GraphNum(*graph)
X
Xin Pan 已提交
372 373 374
=======
          << ir::GraphNum(*compiled_graphs[0])
>>>>>>> fix parallel graph mode program
C
chengduo 已提交
375 376 377 378 379
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
380 381
  }

X
Xin Pan 已提交
382
<<<<<<< HEAD
Y
Yancey1989 已提交
383
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
384
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
385 386
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
X
Xin Pan 已提交
387 388 389
=======
  if (parallel_graphs) {
>>>>>>> polish
Y
Yancey1989 已提交
390
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
391
<<<<<<< HEAD
Y
Yancey1989 已提交
392
        exec_strategy, member_->local_scopes_, member_->places_, main_program,
X
Xin Pan 已提交
393
        graph));
Y
Yancey1989 已提交
394 395 396 397
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
X
Xin Pan 已提交
398 399 400 401 402 403 404 405 406 407
  } else {
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
=======
        exec_strategy, member_->local_scopes_, member_->places_,
        compiled_graphs));
Y
yuyang18 已提交
408
  } else {
Y
Yancey1989 已提交
409 410 411
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
X
Xin Pan 已提交
412
          compiled_graphs[0]));
Y
Yancey1989 已提交
413 414 415
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
X
Xin Pan 已提交
416 417
          compiled_graphs[0]));
>>>>>>> fix parallel graph mode program
Y
Yancey1989 已提交
418
    }
C
chengduoZH 已提交
419
  }
Y
yuyang18 已提交
420 421

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
422
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
423
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
424 425
}

Y
Yancey1989 已提交
426
void ParallelExecutor::BCastParamsToDevices(
427
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
428
  // the initializing bcast, all vars would be bcast from device(0).
429
  for (auto &var : vars) {
X
Xin Pan 已提交
430
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
431
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
432 433 434 435
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
436
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
437
      VLOG(3) << "one in var not inited, return!";
438 439
      continue;
    }
440 441
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
442
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
443
      std::vector<void *> buffers;
C
chengduo 已提交
444
      buffers.reserve(member_->places_.size());
445 446 447 448 449
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
450

X
Xin Pan 已提交
451
        if (i == 0) {
452 453
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
454
          auto local_scope = member_->local_scopes_[i];
455
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
456
          t->Resize(dims);
457
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
458
        }
459
        buffers.push_back(buffer);
460
      }
461

462 463 464 465 466 467
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
468 469
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
470
        }
471
        member_->nccl_ctxs_->WaitAll();
472
      }
C
chengduoZH 已提交
473 474 475
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
476 477
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
478
      for (size_t i = 1; i < member_->places_.size(); ++i) {
479 480
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
481 482 483 484

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
485 486 487 488 489 490
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
491
      }
Y
Stash  
Yu Yang 已提交
492 493
    }
  }
Y
Yu Yang 已提交
494
}
Y
Yu Yang 已提交
495

Y
Yu Yang 已提交
496 497
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
498 499 500
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
501 502
  }
#endif
Y
Yu Yang 已提交
503

X
Xin Pan 已提交
504
  platform::RecordBlock b(0);
S
sneaxiy 已提交
505 506
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
507
  }
S
sneaxiy 已提交
508 509 510
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
511
}
Y
Yu Yang 已提交
512

Y
Yu Yang 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
532 533 534 535 536
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
537 538
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
539
      auto t =
Y
Yu Yang 已提交
540
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
541 542
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
543 544 545 546
    }
  }
}

X
Xin Pan 已提交
547 548 549 550 551 552 553 554 555 556
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

bool EnableParallelGraphExecution(const ir::Graph &graph,
                                  const ExecutionStrategy &exec_strategy,
                                  const BuildStrategy &build_strategy) {
Y
Yancey1989 已提交
557
  if (!FLAGS_enable_parallel_graph) return false;
558

Y
Yancey1989 已提交
559
  bool enable_parallel_graph = true;
560

X
Xin Pan 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
574 575 576
    }
  }

Y
Yancey1989 已提交
577
  if (!member_->use_all_reduce_ || !member_->use_cuda_)
578

Y
Yancey1989 已提交
579 580 581
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
582
  return enable_parallel_graph;
583 584
}

Y
Yu Yang 已提交
585
}  // namespace framework
Y
Yang Yang 已提交
586
}  // namespace paddle
S
sneaxiy 已提交
587

S
sneaxiy 已提交
588
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
589
USE_PASS(eager_deletion_pass);