parallel_executor.cc 18.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
yuyang18 已提交
24
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
25
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
109
  size_t nranks_;
S
sneaxiy 已提交
110

S
sneaxiy 已提交
111 112 113 114 115 116
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
117 118
};

S
sneaxiy 已提交
119 120 121 122 123 124 125
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
126
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
127
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
128 129
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
130 131
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
132
      } else {
S
sneaxiy 已提交
133 134
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
135 136
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
137
    } else {
S
sneaxiy 已提交
138
#endif
S
sneaxiy 已提交
139 140 141 142 143 144 145
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
146 147 148 149
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
150
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
151 152
  }

S
sneaxiy 已提交
153
  if (!gcs_.empty()) {
S
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

180 181 182 183
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
184
ParallelExecutor::ParallelExecutor(
185
    const std::vector<platform::Place> &places,
186 187
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
188
    Scope *scope, const std::vector<Scope *> &local_scopes,
189
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
190
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
191
  member_->global_scope_ = scope;
192
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
193
  member_->build_strategy_ = build_strategy;
194 195
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
196
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
197 198 199 200
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
201 202
  }

203
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
204
  // Create local scopes
205
  if (local_scopes.empty()) {
C
chengduoZH 已提交
206
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
207 208
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
209
      member_->local_scopes_.emplace_back(&scope->NewScope());
210 211
    }
  } else {
C
chengduoZH 已提交
212
    member_->own_local_scope_ = false;
213 214
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
215
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
216
    }
Y
Yu Yang 已提交
217 218
  }

Y
Yancey1989 已提交
219 220 221 222 223
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);
Y
Yancey1989 已提交
224 225 226 227
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
228

C
chengduoZH 已提交
229
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
230
// Bcast Parameters to all GPUs
P
peizhilin 已提交
231
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
232 233 234
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
235
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
236
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
237
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
238
    }
239
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
240 241 242 243
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
244
      }
C
chengduoZH 已提交
245
    }
Y
Yancey1989 已提交
246

C
chengduoZH 已提交
247
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
248 249
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
250 251
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
252
#endif
C
chengduoZH 已提交
253 254
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
255
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
256
  }
Y
Yancey1989 已提交
257
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
258

Y
Yancey1989 已提交
259 260
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
Y
Yancey1989 已提交
261
  std::unique_ptr<ir::Graph> graph;
P
peizhilin 已提交
262
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
263 264 265
  graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
C
chengduoZH 已提交
266
#else
Y
Yancey1989 已提交
267 268 269
  graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_);
Y
Yu Yang 已提交
270
#endif
Y
Yancey1989 已提交
271
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
272 273
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
274
  if (max_memory_size >= 0) {
Y
Yancey1989 已提交
275 276
    graph = member_->PrepareGCAndRefCnts(std::move(graph),
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
277 278
  }

279 280
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
281
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
282 283 284 285 286 287
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
288 289
    }
  }
Y
Yancey1989 已提交
290

W
Wu Yi 已提交
291 292
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
293
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
294 295 296 297
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
298
          << ir::GraphNum(*graph)
C
chengduo 已提交
299 300 301 302 303
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
304 305
  }

Y
Yancey1989 已提交
306
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
307 308 309 310 311 312 313 314 315 316 317 318
    auto parallel_graph =
        details::SeparateMultiDevicesGraph(member_->places_, std::move(graph));
    auto seq_allreduce_pass =
        ir::PassRegistry::Instance().Get("all_reduce_deps_pass");
    seq_allreduce_pass->Erase(details::kAllOpDescs);
    seq_allreduce_pass->Set<const std::vector<OpDesc *>>(
        details::kAllOpDescs,
        new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
    for (size_t i = 0; i < parallel_graph.size(); ++i) {
      parallel_graph[i] =
          seq_allreduce_pass->Apply(std::move(parallel_graph[i]));
    }
Y
Yancey1989 已提交
319
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
320
        exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
321
        std::move(parallel_graph)));
Y
yuyang18 已提交
322
  } else {
Y
Yancey1989 已提交
323 324 325
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
326
          std::move(graph)));
Y
Yancey1989 已提交
327 328 329
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
330
          std::move(graph)));
Y
Yancey1989 已提交
331
    }
C
chengduoZH 已提交
332
  }
Y
yuyang18 已提交
333 334

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
335
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
336
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
337 338
}

Y
Yancey1989 已提交
339
void ParallelExecutor::BCastParamsToDevices(
340
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
341
  // the initializing bcast, all vars would be bcast from device(0).
342
  for (auto &var : vars) {
X
Xin Pan 已提交
343
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
344
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
345 346 347 348
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
349
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
350
      VLOG(3) << "one in var not inited, return!";
351 352
      continue;
    }
353 354
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
355
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
356
      std::vector<void *> buffers;
C
chengduo 已提交
357
      buffers.reserve(member_->places_.size());
358 359 360 361 362
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
363

X
Xin Pan 已提交
364
        if (i == 0) {
365 366
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
367
          auto local_scope = member_->local_scopes_[i];
368
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
369
          t->Resize(dims);
370
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
371
        }
372
        buffers.push_back(buffer);
373
      }
374

375 376 377 378 379 380
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
381 382
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
383
        }
384
        member_->nccl_ctxs_->WaitAll();
385
      }
C
chengduoZH 已提交
386 387 388
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
389 390
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
391
      for (size_t i = 1; i < member_->places_.size(); ++i) {
392 393
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
394 395 396 397

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
398 399 400 401 402 403
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
404
      }
Y
Stash  
Yu Yang 已提交
405 406
    }
  }
Y
Yu Yang 已提交
407
}
Y
Yu Yang 已提交
408

Y
Yu Yang 已提交
409 410
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
411 412 413
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
414 415
  }
#endif
Y
Yu Yang 已提交
416

X
Xin Pan 已提交
417
  platform::RecordBlock b(0);
S
sneaxiy 已提交
418 419
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
420
  }
S
sneaxiy 已提交
421 422 423
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
424
}
Y
Yu Yang 已提交
425

Y
Yu Yang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
445 446 447 448 449
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
450 451
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
452
      auto t =
Y
Yu Yang 已提交
453
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
454 455
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
456 457 458 459
    }
  }
}

460 461 462
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
463
  if (!FLAGS_enable_parallel_graph) return false;
464

Y
Yancey1989 已提交
465
  bool enable_parallel_graph = true;
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

Y
Yancey1989 已提交
481 482
  // if (!member_->use_all_reduce_ || !member_->use_cuda_)
  if (!member_->use_all_reduce_) enable_parallel_graph = false;
483 484 485 486

  if (build_strategy.enable_sequential_execution_ ||
      exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
    enable_parallel_graph = false;
Y
Yancey1989 已提交
487
  return enable_parallel_graph;
488 489
}

490
ParallelExecutor::~ParallelExecutor() {
491 492
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
493
  }
S
sneaxiy 已提交
494
  delete member_;
495 496
}

Y
Yu Yang 已提交
497
}  // namespace framework
Y
Yang Yang 已提交
498
}  // namespace paddle
S
sneaxiy 已提交
499

S
sneaxiy 已提交
500
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
501
USE_PASS(eager_deletion_pass);