parallel_executor.cc 15.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Y
Yu Yang 已提交
16 17
#include "lod_tensor.h"
#include "op_registry.h"
Y
Yu Yang 已提交
18
#include "threadpool.h"
Y
Yang Yang 已提交
19 20

namespace paddle {
Y
Yu Yang 已提交
21 22
namespace framework {

Y
Yu Yang 已提交
23 24 25 26 27 28
#ifdef PADDLE_WITH_CUDA

// FIXME: CHECK the return value of x;
#define NCCL_INVOKE(x) x
#endif

Y
Yu Yang 已提交
29 30
struct OpHandle;

Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
struct VarHandleBase {
  virtual ~VarHandleBase() {}
  virtual std::string DebugString() const = 0;

  OpHandle *generated_op_;
  std::vector<OpHandle *> pending_ops_;
};

struct VarHandle : public VarHandleBase {
  std::string DebugString() const override {
    std::stringstream ss;
    ss << name_ << ":" << place_;
    return ss.str();
  }

Y
Yu Yang 已提交
46 47 48
  size_t version_;
  std::string name_;
  platform::Place place_;
Y
Yu Yang 已提交
49
};
Y
Yu Yang 已提交
50

Y
Yu Yang 已提交
51 52
struct DependencyVarHandle : public VarHandleBase {
  std::string DebugString() const override { return "Deps var"; }
Y
Yu Yang 已提交
53 54 55
};

struct OpHandle {
Y
Yu Yang 已提交
56 57 58 59 60
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
  std::unordered_map<platform::Place, platform::DeviceContext *,
                     platform::PlaceHash>
      dev_ctx_;
Y
Yu Yang 已提交
61 62 63 64 65

  std::string DebugString() {
    std::stringstream ss;
    ss << "(";
    for (auto *var : inputs_) {
Y
Yu Yang 已提交
66
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
67 68 69
    }
    ss << ") --> (";
    for (auto *var : outputs_) {
Y
Yu Yang 已提交
70
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
71 72 73 74 75 76
    }
    ss << ")\n";
    return ss.str();
  }

  virtual ~OpHandle() {}
Y
Yu Yang 已提交
77 78 79

  virtual void Run() {}
  virtual void Wait() {}
Y
Yu Yang 已提交
80 81 82 83
};

struct ComputationOpHandle : public OpHandle {
  std::unique_ptr<OperatorBase> op_;
Y
Yu Yang 已提交
84 85
  Scope *scope_;
  platform::Place place_;
Y
Yu Yang 已提交
86

Y
Stash  
Yu Yang 已提交
87
  explicit ComputationOpHandle(const OpDesc &op_desc, platform::Place place)
Y
Yu Yang 已提交
88
      : op_(framework::OpRegistry::CreateOp(op_desc)),
Y
Stash  
Yu Yang 已提交
89
        scope_(nullptr),
Y
Yu Yang 已提交
90 91 92 93
        place_(place) {}

  void Run() override {
    // Wait other op if necessary
Y
Stash  
Yu Yang 已提交
94
    LOG(INFO) << DebugString();
Y
Yu Yang 已提交
95 96 97 98 99 100 101 102 103
    auto *cur_ctx = dev_ctx_[place_];
    for (auto *in : inputs_) {
      if (in->generated_op_ && in->generated_op_->dev_ctx_[place_] != cur_ctx) {
        in->generated_op_->Wait();
      }
    }

    op_->Run(*scope_, place_);
  }
Y
Yu Yang 已提交
104 105 106 107 108 109 110 111
};

struct ScaleLossGradOpHandle : public OpHandle {};

struct NCCLAllReduceOpHandle : public OpHandle {};

class ParallelExecutorPrivate {
 public:
Y
Yu Yang 已提交
112 113 114
  explicit ParallelExecutorPrivate(size_t num_threads = 12)
      : pool_(num_threads) {}

Y
Yu Yang 已提交
115 116
  std::unordered_map<platform::Place, Scope *, platform::PlaceHash>
      local_scopes_;
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

#ifdef PADDLE_WITH_CUDA
  struct NCCLContext {
    std::unique_ptr<platform::CUDADeviceContext> ctx_;
    ncclComm_t comm;

    explicit NCCLContext(int dev_id) {
      ctx_.reset(new platform::CUDADeviceContext(platform::CUDAPlace(dev_id)));
    }

    cudaStream_t stream() const { return ctx_->stream(); }

    int device_id() const {
      return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
    }

    static void InitNCCLContext(std::map<int, NCCLContext> &contexts) {
      std::vector<ncclComm_t> comms;
      std::vector<int> devs;
      comms.resize(contexts.size());
      devs.reserve(contexts.size());

      for (auto &ctx : contexts) {
        devs.push_back(ctx.first);
      }

      NCCL_INVOKE(platform::dynload::ncclCommInitAll(
          &comms[0], static_cast<int>(contexts.size()), &devs[0]));

      int i = 0;
      for (auto &ctx : contexts) {
        ctx.second.comm = comms[i++];
      }
    }
  };

  std::map<int, NCCLContext> communication_streams_;

  NCCLContext &GetNCCLCtx(platform::Place p) {
    int dev_id = boost::get<platform::CUDAPlace>(p).device;
    return communication_streams_.at(dev_id);
  }

#endif

Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174
  platform::DeviceContext *CommunicationDevCtx(const platform::Place &place) {
    if (platform::is_cpu_place(place) || local_scopes_.size() == 1) {
      return const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
    } else {
#ifdef PADDLE_WITH_CUDA
      return GetNCCLCtx(place).ctx_.get();
#else
      PADDLE_THROW("Not compiled with CUDA")
#endif
    }
  }

Y
Yu Yang 已提交
175 176 177 178 179 180
  platform::Place main_place_;

  std::unordered_map<platform::Place,
                     std::unordered_map<std::string, std::map<int, VarHandle>>,
                     platform::PlaceHash>
      vars_;
Y
Yu Yang 已提交
181 182
  std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;

Y
Yu Yang 已提交
183
  std::vector<std::unique_ptr<OpHandle>> ops_;
Y
Yu Yang 已提交
184 185

  ThreadPool pool_;
Y
Yu Yang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
  // FIXME!!
  return ncclFloat;
}

ParallelExecutor::ParallelExecutor(
    const std::vector<platform::Place> &places,
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
    : member_(new ParallelExecutorPrivate()) {
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
  for (auto &place : places) {
    member_->local_scopes_[place] = &scope->NewScope();
  }
  member_->main_place_ = places[0];

  // Bcast Parameters to all GPUs
Y
Yu Yang 已提交
210 211 212 213
  if (platform::is_gpu_place(member_->main_place_) &&
      member_->local_scopes_.size() != 1) {  // Is CUDA
    BuildNCCLCommunicator();
    BCastParamsToGPUs(startup_program);
Y
Yu Yang 已提交
214 215 216 217 218 219 220 221 222 223 224
  }
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  ConstructDependencyGraph(params, main_program, loss_var_name);
}

void ParallelExecutor::ConstructDependencyGraph(
    const std::unordered_set<std::string> &params,
    const ProgramDesc &main_program, const std::string &loss_var_name) const {
Y
Yu Yang 已提交
225
  std::unordered_set<std::string> grads;
Y
Yu Yang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  for (auto &each_param : params) {
    grads.insert(each_param + "@GRAD");
  }

  bool is_forwarding = true;
  for (auto *op : main_program.Block(0).AllOps()) {
    bool change_forward = false;

    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (auto &pair : member_->local_scopes_) {
Y
Stash  
Yu Yang 已提交
243
      member_->ops_.emplace_back(new ComputationOpHandle(*op, pair.first));
Y
Yu Yang 已提交
244
      auto *op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
245 246
      op_handle->dev_ctx_[pair.first] = const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(pair.first));
Y
Yu Yang 已提交
247 248 249 250 251 252 253

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        VarHandle *var = GetVarHandle(each_var_name, place);
        op_handle->inputs_.emplace_back(var);
Y
Yu Yang 已提交
254
        var->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        GenerateVar(op_handle, each_var_name, place);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name) {
          // Insert ScaleCost OpHandle
          member_->ops_.emplace_back(new ScaleLossGradOpHandle());
          op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
268 269 270 271

          op_handle->dev_ctx_[pair.first] =
              member_->CommunicationDevCtx(pair.first);

Y
Yu Yang 已提交
272 273
          auto &place = pair.first;
          VarHandle *loss = GetVarHandle(loss_var_name, place);
Y
Yu Yang 已提交
274
          loss->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
          op_handle->inputs_.emplace_back(loss);
          GenerateVar(op_handle, loss_var_name + "@GRAD", place);
          change_forward = true;
          LOG(INFO) << "Scale Loss " << op_handle->DebugString();
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grads.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
          member_->ops_.emplace_back(new NCCLAllReduceOpHandle());
          auto *op_handle = member_->ops_.back().get();

          for (auto &pair : member_->local_scopes_) {
            auto &place = pair.first;
            auto &vars = member_->vars_[place][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->inputs_.emplace_back(prev_grad);
Y
Yu Yang 已提交
304
            prev_grad->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
305 306 307 308 309 310
            auto &var = vars[vars.size()];
            var.place_ = place;
            var.generated_op_ = op_handle;
            var.name_ = og;
            var.version_ = vars.size() - 1;
            op_handle->outputs_.emplace_back(&var);
Y
Yu Yang 已提交
311 312 313 314 315

            for (auto &pair : member_->local_scopes_) {
              op_handle->dev_ctx_[pair.first] =
                  member_->CommunicationDevCtx(pair.first);
            }
Y
Yu Yang 已提交
316 317 318 319 320
          }
        }
      }
    }
  }
Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

  /**
   * Dependency graph has been constructed. However, there are still data
   * harzaeds need to be handled.
   *
   * We only handle write after read(WAR), since it should not have a write
   * after write in program. If there are write after write operators, we need
   * prune them.
   *
   * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
   */

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      if (name_pair.second.size() <= 1) {
        return;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        auto *write_op = it_new->second.generated_op_;
        auto &read_ops = it_old->second.pending_ops_;

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;

          auto *dep_var = new DependencyVarHandle();
          dep_var->generated_op_ = read_op;
          read_op->outputs_.emplace_back(dep_var);

          dep_var->pending_ops_.emplace_back(write_op);
          write_op->inputs_.emplace_back(dep_var);
          member_->dep_vars_.emplace(dep_var);
        }
      }
    }
  }
Y
Yu Yang 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

void ParallelExecutor::GenerateVar(OpHandle *op_handle,
                                   const std::string &each_var_name,
                                   const platform::Place &place) const {
  auto &vars = member_->vars_[place][each_var_name];
  size_t version = vars.size();
  auto &var = vars[version];
  var.version_ = version;
  var.generated_op_ = op_handle;
  var.name_ = each_var_name;
  var.place_ = place;
  op_handle->outputs_.emplace_back(&var);
}

VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
                                          const platform::Place &place) const {
  auto &var_holders = member_->vars_[place];
  auto &var_holder = var_holders[each_var_name];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    auto &init_var = var_holder[0];
    init_var.place_ = place;
    init_var.name_ = each_var_name;
    init_var.generated_op_ = nullptr;
    init_var.version_ = 0;
    var = &init_var;
  } else {
    var = &var_holder.rbegin()->second;
  }
  return var;
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
Y
Yu Yang 已提交
394
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
395
  auto *main_scope = member_->local_scopes_[member_->main_place_];
Y
Yu Yang 已提交
396

Y
Yu Yang 已提交
397 398 399 400 401 402 403
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
      ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
      auto &dims = main_tensor.dims();
      size_t numel = main_tensor.numel();
Y
Yu Yang 已提交
404 405 406 407
      std::vector<std::pair<void *, ParallelExecutorPrivate::NCCLContext *>>
          mems;
      mems.emplace_back(const_cast<void *>(main_tensor.data<void>()),
                        &member_->GetNCCLCtx(member_->main_place_));
Y
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417

      for (auto &pair : member_->local_scopes_) {
        if (pair.first == member_->main_place_) {
          continue;
        }

        auto local_scope = pair.second;
        auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
        t->Resize(dims);
        mems.emplace_back(t->mutable_data(pair.first, main_tensor.type()),
Y
Yu Yang 已提交
418
                          &member_->GetNCCLCtx(member_->main_place_));
Y
Yu Yang 已提交
419 420 421 422 423 424 425
      }

      // TODO(yy): Invoke ncclBCast here. mems, numel, data_type. The mems[0]
      // is the src, rests are dests.

      (void)(data_type);
      (void)(numel);
Y
Yu Yang 已提交
426 427 428 429 430 431
    }
  }
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
432

Y
Yu Yang 已提交
433 434 435 436 437
void ParallelExecutor::BuildNCCLCommunicator() const {
#ifdef PADDLE_WITH_CUDA
  for (auto &place_pair : member_->local_scopes_) {
    auto place = place_pair.first;
    int dev_id = boost::get<platform::CUDAPlace>(place).device;
Y
Yu Yang 已提交
438

Y
Yu Yang 已提交
439 440
    member_->communication_streams_.emplace(
        dev_id, ParallelExecutorPrivate::NCCLContext(dev_id));
Y
Yu Yang 已提交
441
  }
Y
Yu Yang 已提交
442 443 444 445

  ParallelExecutorPrivate::NCCLContext::InitNCCLContext(
      member_->communication_streams_);
#endif
Y
Yu Yang 已提交
446 447 448 449 450
}

std::vector<LoDTensor> ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
  // Version --> VarHandle
Y
Yu Yang 已提交
451

Y
Yu Yang 已提交
452
  std::unordered_map<VarHandleBase *, bool> pending_vars;
Y
Yu Yang 已提交
453 454 455 456 457
  std::unordered_map<OpHandle *, size_t> pending_ops;

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      for (auto &version_pair : name_pair.second) {
Y
Yu Yang 已提交
458 459
        pending_vars[&version_pair.second] =
            version_pair.second.generated_op_ == nullptr;
Y
Yu Yang 已提交
460 461 462 463
      }
    }
  }

Y
Yu Yang 已提交
464 465 466 467
  for (auto &var : member_->dep_vars_) {
    pending_vars[var.get()] = var->generated_op_ == nullptr;
  }

Y
Yu Yang 已提交
468 469 470 471
  for (auto &op : member_->ops_) {
    pending_ops.insert({op.get(), op->inputs_.size()});
  }

Y
Yu Yang 已提交
472
  while (!pending_ops.empty()) {
Y
Yu Yang 已提交
473
    VarHandleBase *ready_var = nullptr;
Y
Yu Yang 已提交
474 475 476
    for (auto &pair : pending_vars) {
      if (pair.second) {
        ready_var = pair.first;
Y
Yu Yang 已提交
477 478
      }
    }
Y
Yu Yang 已提交
479 480 481 482

    if (ready_var == nullptr) {
      member_->pool_.Wait();  // Wait thread pool;
      continue;
Y
Yu Yang 已提交
483 484
    }

Y
Yu Yang 已提交
485 486
    pending_vars.erase(ready_var);

Y
Yu Yang 已提交
487
    std::vector<OpHandle *> to_run;
Y
Yu Yang 已提交
488 489 490 491 492 493

    for (auto *op : ready_var->pending_ops_) {
      auto &deps = pending_ops[op];
      --deps;
      if (deps == 0) {
        to_run.emplace_back(op);
Y
Yu Yang 已提交
494 495 496 497 498 499
      }
    }

    for (auto *op : to_run) {
      pending_ops.erase(op);

Y
Yu Yang 已提交
500 501 502 503
      std::vector<bool *> ready_buffer;
      for (auto *var : op->outputs_) {
        ready_buffer.emplace_back(&pending_vars[var]);
      }
Y
Yu Yang 已提交
504

Y
Yu Yang 已提交
505 506
      auto op_run = [ready_buffer, op] {
        // TODO(yy) Check Previous Op has same dev ctx.
Y
Yu Yang 已提交
507
        op->Run();
Y
Yu Yang 已提交
508 509 510 511
        for (auto *ready : ready_buffer) {
          *ready = true;
        }
      };
Y
Yu Yang 已提交
512

Y
Yu Yang 已提交
513
      member_->pool_.Run(op_run);
Y
Yu Yang 已提交
514 515 516 517 518
    }
  }
  return std::vector<LoDTensor>();
}
}  // namespace framework
Y
Yang Yang 已提交
519
}  // namespace paddle