parallel_executor.cc 20.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
30
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
32
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
35
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
36
#endif
Y
Yu Yang 已提交
37
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
38 39
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
40
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
41
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
42

Y
Yang Yang 已提交
43
namespace paddle {
Y
Yu Yang 已提交
44 45
namespace framework {

Y
Yu Yang 已提交
46
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
47
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
48
static bool gProfileStarted = false;
Y
Yu Yang 已提交
49
#endif
Y
Yu Yang 已提交
50 51 52
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
53
      : places_(places) {
Y
Yu Yang 已提交
54
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
55 56
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
57
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
58 59 60
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
61
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
62 63 64 65
#endif
      });
    }
  }
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74 75 76 77
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
78

S
sneaxiy 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
93
      }
S
sneaxiy 已提交
94
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
95 96 97
    }
  }

D
dzhwinter 已提交
98
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
99 100
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
101
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
102
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
103

P
peizhilin 已提交
104
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
105
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108
  bool own_local_scope_;
  bool use_cuda_;
109
  bool use_all_reduce_;
110
  size_t nranks_;
S
sneaxiy 已提交
111

S
sneaxiy 已提交
112 113 114 115 116 117
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
118 119
};

S
sneaxiy 已提交
120 121 122 123 124 125 126
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
127
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
128
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
129 130
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
131 132
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133
      } else {
S
sneaxiy 已提交
134 135
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
136 137
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
138
    } else {
S
sneaxiy 已提交
139
#endif
S
sneaxiy 已提交
140 141 142 143 144 145 146
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
147 148 149 150
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
151
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
152 153
  }

S
sneaxiy 已提交
154
  if (!gcs_.empty()) {
S
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

181 182 183 184
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
185
ParallelExecutor::ParallelExecutor(
186
    const std::vector<platform::Place> &places,
187 188
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
189
    Scope *scope, const std::vector<Scope *> &local_scopes,
190
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
191
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
192
  member_->global_scope_ = scope;
193
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
194
  member_->build_strategy_ = build_strategy;
195 196
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
197
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
198 199 200 201
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
202 203
  }

204
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
205
  // Create local scopes
206
  if (local_scopes.empty()) {
C
chengduoZH 已提交
207
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
208 209
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
210
      member_->local_scopes_.emplace_back(&scope->NewScope());
211 212
    }
  } else {
C
chengduoZH 已提交
213
    member_->own_local_scope_ = false;
214 215
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
216
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
217
    }
Y
Yu Yang 已提交
218 219
  }

Q
Qiao Longfei 已提交
220 221 222 223 224
  if (build_strategy.async_mode_) {
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
  }

Y
Yancey1989 已提交
225 226 227 228 229
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);
Y
Yancey1989 已提交
230 231 232 233
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
234

C
chengduoZH 已提交
235
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
236
// Bcast Parameters to all GPUs
P
peizhilin 已提交
237
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
238 239 240
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
241
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
242
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
243
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
244
    }
245
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
246 247 248 249
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
250
      }
C
chengduoZH 已提交
251
    }
Y
Yancey1989 已提交
252

C
chengduoZH 已提交
253
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
254 255
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
256 257
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
258
#endif
C
chengduoZH 已提交
259 260
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
261
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
262
  }
Y
Yancey1989 已提交
263
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
264

Y
Yancey1989 已提交
265 266
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
Q
Qiao Longfei 已提交
267
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
268
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Q
Qiao Longfei 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
    VLOG(3) << "use local async mode";
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_,
          member_->nccl_ctxs_.get());
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_.get());
    graphs.push_back(std::move(graph));
  }
C
chengduoZH 已提交
284
#else
Q
Qiao Longfei 已提交
285
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
Q
Qiao Longfei 已提交
286
    VLOG(3) << "use local async mode";
Q
can run  
Qiao Longfei 已提交
287 288 289 290 291 292 293
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_);
      graphs.push_back(std::move(graph));
    }
  } else {
Q
Qiao Longfei 已提交
294 295 296 297
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
    graphs.push_back(std::move(graph));
Q
can run  
Qiao Longfei 已提交
298
  }
Y
Yu Yang 已提交
299
#endif
Y
Yancey1989 已提交
300
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
301 302
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
303
  if (max_memory_size >= 0) {
Q
Qiao Longfei 已提交
304 305 306 307
    for (size_t i = 0; i < graphs.size(); ++i) {
      graphs[i] = member_->PrepareGCAndRefCnts(
          std::move(graphs[i]), static_cast<size_t>(max_memory_size));
    }
Y
Yancey1989 已提交
308 309
  }

310 311
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
312
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
313 314 315 316 317 318 319 320
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
Y
Yancey1989 已提交
321 322
    }
  }
Y
Yancey1989 已提交
323

W
Wu Yi 已提交
324 325
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Q
Qiao Longfei 已提交
326
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
327 328 329 330
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Q
Qiao Longfei 已提交
331
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
332 333 334 335 336
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
337 338
  }

339
  if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
Q
can run  
Qiao Longfei 已提交
340 341 342 343 344 345
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
346
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
347 348
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
349
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
350
        exec_strategy, member_->local_scopes_, member_->places_, main_program,
Q
Qiao Longfei 已提交
351
        std::move(graphs[0])));
Y
Yancey1989 已提交
352 353 354 355
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
356
  } else {
Y
Yancey1989 已提交
357
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
358
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
359 360
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Q
Qiao Longfei 已提交
361
          std::move(graphs[0])));
Y
Yancey1989 已提交
362
    } else {
Q
can run  
Qiao Longfei 已提交
363
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
364 365
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Q
Qiao Longfei 已提交
366
          std::move(graphs[0])));
Y
Yancey1989 已提交
367
    }
C
chengduoZH 已提交
368
  }
Y
yuyang18 已提交
369

Q
can run  
Qiao Longfei 已提交
370
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Y
yuyang18 已提交
371
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
372
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
373
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
374 375
}

Y
Yancey1989 已提交
376
void ParallelExecutor::BCastParamsToDevices(
377
    const std::unordered_set<std::string> &vars) const {
Q
Qiao Longfei 已提交
378
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
379
  // the initializing bcast, all vars would be bcast from device(0).
380
  for (auto &var : vars) {
X
Xin Pan 已提交
381
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
382
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
383 384 385 386
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
387
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
388
      VLOG(3) << "one in var not inited, return!";
389 390
      continue;
    }
391 392
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
393
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
394
      std::vector<void *> buffers;
C
chengduo 已提交
395
      buffers.reserve(member_->places_.size());
396 397 398 399 400
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
401

X
Xin Pan 已提交
402
        if (i == 0) {
403 404
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
405
          auto local_scope = member_->local_scopes_[i];
406
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
407
          t->Resize(dims);
408
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
409
        }
410
        buffers.push_back(buffer);
411
      }
412

413 414 415 416 417 418
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
419 420
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
421
        }
422
        member_->nccl_ctxs_->WaitAll();
423
      }
C
chengduoZH 已提交
424 425 426
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
427 428
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
429
      for (size_t i = 1; i < member_->places_.size(); ++i) {
430 431
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
432

Q
Qiao Longfei 已提交
433
        auto copy_memory = [&] {
434 435 436
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
437 438
        };

Q
Qiao Longfei 已提交
439
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
440 441 442 443 444 445 446

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
447
        } else {
Q
can run  
Qiao Longfei 已提交
448
          share_memory();
449
        }
Y
Yu Yang 已提交
450
      }
Y
Stash  
Yu Yang 已提交
451 452
    }
  }
Y
Yu Yang 已提交
453
}
Y
Yu Yang 已提交
454

Y
Yu Yang 已提交
455 456
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
457 458 459
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
460 461
  }
#endif
Y
Yu Yang 已提交
462

X
Xin Pan 已提交
463
  platform::RecordBlock b(0);
S
sneaxiy 已提交
464 465
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
466
  }
S
sneaxiy 已提交
467 468 469
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
470
}
Y
Yu Yang 已提交
471

Y
Yu Yang 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
491 492 493 494 495
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
496 497
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
498
      auto t =
Y
Yu Yang 已提交
499
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
500 501
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
502 503 504 505
    }
  }
}

506 507 508
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
509
  if (!FLAGS_enable_parallel_graph) return false;
510

Y
Yancey1989 已提交
511
  bool enable_parallel_graph = true;
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)

Y
Yancey1989 已提交
529 530 531
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
532
  return enable_parallel_graph;
533 534
}

535
ParallelExecutor::~ParallelExecutor() {
536 537
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
538
  }
S
sneaxiy 已提交
539
  delete member_;
540 541
}

Y
Yu Yang 已提交
542
}  // namespace framework
Y
Yang Yang 已提交
543
}  // namespace paddle
S
sneaxiy 已提交
544

S
sneaxiy 已提交
545
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
546
USE_PASS(eager_deletion_pass);