build_strategy.cc 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29
DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
31

32 33 34 35
namespace paddle {
namespace framework {
namespace details {

36
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
37 38
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
39
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
40
  // don't need to append it here.
Y
Yancey1989 已提交
41
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
42 43
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
44 45
}

C
chengduo 已提交
46 47 48 49 50 51
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

52 53 54 55
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
56
    ResolveOptionConfliction();
C
chengduo 已提交
57

C
chengduo 已提交
58 59 60 61 62
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

63 64
    AppendPassToUseNgraph("ngraph_subgraph_pass");

C
chengduo 已提交
65 66
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
67

C
chengduo 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
81

C
chengduo 已提交
82 83
    SetCollectiveContext();
  }
84

C
chengduo 已提交
85 86 87
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
88
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
89
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
90 91
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
92
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
93 94 95
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
96
    }
C
chengduo 已提交
97
    if (strategy_.is_distribution_) {
C
chengduo 已提交
98
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
99 100 101
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
102
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
103 104 105
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
106
    }
C
chengduo 已提交
107
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
108
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
109 110 111
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
112
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
113 114
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
115
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
116
    }
C
chengduo 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
130 131
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
132 133 134 135
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
136 137
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
138
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
139
    }
C
chengduo 已提交
140
  }
141

C
chengduo 已提交
142 143 144 145 146 147
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
148

C
chengduo 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
164

C
chengduo 已提交
165 166 167
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
168 169 170 171
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
#ifdef PADDLE_WITH_CUDA
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
#endif
C
chengduo 已提交
172 173
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
174
    // for single card training, fuse_all_reduce_ops is unnecessary.
175
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
176 177
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
178
    // Fuse all the optimization operators.
C
chengduo 已提交
179 180 181
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
182
    if (strategy_.fuse_all_optimizer_ops_ == true) {
183 184 185
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
186
    }
C
chengduo 已提交
187
  }
C
chengduo 已提交
188

C
chengduo 已提交
189 190 191 192 193 194 195 196 197
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
198
    }
C
chengduo 已提交
199
    VLOG(1) << "CollectiveContext:" << context->String();
200 201
  }

202
  // Convert graph to run on multi-devices.
C
chengduo 已提交
203
  void AppendMultiDevPass() {
C
chengduo 已提交
204
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
205 206 207
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
208 209
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
210 211 212 213 214 215 216 217 218 219 220
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
221 222 223 224 225 226
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
227 228 229 230 231 232 233 234 235 236 237
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
238 239 240 241 242
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

267 268 269 270 271 272 273 274 275 276 277 278
  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
279 280
                      platform::errors::PreconditionNotMet(
                          "Please compile with NGRAPH first to use NGRAPH"));
281 282 283
#endif
  }

284 285 286 287
 private:
  BuildStrategy strategy_;
};

288
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
289 290
    bool finalize_strategy) const {
  if (is_finalized_) {
291 292
    return pass_builder_;
  }
293
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
294 295
  if (finalize_strategy) {
    is_finalized_ = true;
296
  }
X
fix  
Xin Pan 已提交
297
  return pass_builder_;
298 299
}

300
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
301
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
302 303
}

304 305 306 307 308
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
309
#if defined(PADDLE_WITH_NCCL)
310 311
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
312
#else
313
                                const bool use_cuda) const {
314
#endif
C
chengduo 已提交
315
  VLOG(1) << "apply all passes";
316 317
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
318 319

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
320
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
321 322 323
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
324 325
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
326 327
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
328
                                                    &local_scopes);
329 330
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
331

332
#if defined(PADDLE_WITH_NCCL)
333
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
334
      pass->Erase(kNCCLCtxs);
335
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
336
#endif
C
chengduo 已提交
337
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
338 339
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
340 341 342 343 344
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
345
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
346 347 348 349 350 351
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
352
#endif
353
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
354 355
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
356
    } else if (pass->Type() == "sequential_execution_pass") {
357 358
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
359
    } else if (pass->Type() == "all_reduce_deps_pass") {
360
#if defined(PADDLE_WITH_NCCL)
361
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
362
      pass->Erase(kNCCLCtxs);
363
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
364 365 366 367
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
368 369
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
370 371 372 373 374 375
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
376 377 378 379 380 381
    } else if (pass->Type() == "fusion_group_pass") {
      pass->Set<bool>("use_gpu", new bool(use_cuda));
      if (!use_cuda) {
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
382 383 384 385 386 387
    } else if (pass->Type() == "fuse_bn_act_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
388 389 390
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
391 392 393 394 395 396
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
397
    }
C
chengduo 已提交
398
    VLOG(1) << "Start Apply Pass " << pass->Type();
399
    graph = pass->Apply(graph);
C
chengduo 已提交
400
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
401
  }
C
chengduo 已提交
402
  VLOG(1) << "All Passes Applied";
403 404
  return graph;
}
D
dzhwinter 已提交
405

406 407 408 409
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
410
USE_PASS(sync_batch_norm_pass);
411
USE_PASS(fuse_relu_depthwise_conv_pass);
412
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
413
USE_PASS(fuse_bn_act_pass);
414
USE_PASS(graph_viz_pass);
415
USE_PASS(multi_batch_merge_pass);
416
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
417
USE_PASS(all_reduce_mode_multi_devices_pass);
418
USE_PASS(dist_multi_devices_pass);
419 420
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
421
USE_PASS(sequential_execution_pass);
422
USE_PASS(all_reduce_deps_pass);
423
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
424
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
425
USE_PASS(lock_free_optimize_pass);
426
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
427
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
428 429
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
430
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
431
USE_PASS(fuse_all_reduce_op_pass);
432
USE_PASS(runtime_context_cache_pass);
433 434 435
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
436 437 438
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif
439 440 441
#ifdef PADDLE_WITH_CUDA
USE_PASS(fusion_group_pass);
#endif