framework.py 91.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306
        self.block = block
F
fengjiayi 已提交
307
        self.error_clip = error_clip
Y
Yu Yang 已提交
308 309

        if name is None:
Y
Yu Yang 已提交
310
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
311
        is_new_var = False
M
minqiyang 已提交
312
        name = cpt.to_text(name)
M
minqiyang 已提交
313
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
314 315

        if self.desc is None:
M
minqiyang 已提交
316
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
317
            is_new_var = True
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
327
        if shape is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
338
        if dtype is not None:
339
            if not isinstance(dtype, core.VarDesc.VarType):
340
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
341
            if is_new_var:
F
fengjiayi 已提交
342
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
343
            else:
F
fengjiayi 已提交
344
                old_dtype = self.dtype
Q
QI JUN 已提交
345
                if dtype != old_dtype:
Y
Yu Yang 已提交
346 347 348 349 350
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
351 352

        if lod_level is not None:
Y
Yu Yang 已提交
353
            if is_new_var:
354
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
355 356 357 358 359 360 361
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
362 363 364 365 366 367 368 369 370 371 372
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

373 374 375 376 377 378 379 380
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
381
        if _in_imperative_mode():
M
minqiyang 已提交
382
            # record vars in tracer rather than blocks
M
minqiyang 已提交
383 384
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
385
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
386
            self._ivar.desc = self.desc
387 388
            self._ivar.block = block.desc
            self._ivar.name = name
389
            self._ivar.persistable = persistable
M
minqiyang 已提交
390 391
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
392 393 394 395 396
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
397

398
    def _numpy(self):
M
minqiyang 已提交
399
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
400
        return np.array(new_ivar.value().get_tensor())
401 402

    def _backward(self):
X
Xin Pan 已提交
403
        self._ivar._run_backward()
404 405

    def _gradient(self):
M
minqiyang 已提交
406
        return np.array(self._ivar._grad_value())
407

X
Xin Pan 已提交
408 409
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
410

411
    def __str__(self):
Y
Yang Yang(Tony) 已提交
412 413
        return self.to_string(True)

F
update  
fengjiayi 已提交
414
    def to_string(self, throw_on_error, with_details=False):
415 416 417 418
        """
        Get debug string.

        Args:
419 420
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
421
            with_details(bool): more details about variables and parameters
422 423
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
424

425 426
        Returns:
            str: The debug string.
427
        """
F
update  
fengjiayi 已提交
428 429
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
430
        protostr = self.desc.serialize_to_string()
431
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
432 433 434 435
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
436 437
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
438
        return res_str
439 440 441

    __repr__ = __str__

W
Wu Yi 已提交
442
    def _set_desc(self, input):
443 444 445 446 447 448 449 450 451
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
452 453
        self.desc = input

454 455
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
456 457 458 459
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
460 461 462

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
463 464 465
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
466

467 468 469 470
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
471 472 473 474
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
475 476
    @property
    def name(self):
M
minqiyang 已提交
477
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
478

T
typhoonzero 已提交
479 480 481 482
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
483 484 485
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
486
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
487 488

    @property
F
fengjiayi 已提交
489 490
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
491 492 493

    @property
    def lod_level(self):
494
        return self.desc.lod_level()
Y
Yu Yang 已提交
495

Y
Yu Yang 已提交
496 497 498 499
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
500
    def _set_error_clip(self, error_clip):
501 502 503 504 505 506 507 508 509
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
510 511
        self.error_clip = error_clip

Y
Yu Yang 已提交
512

F
fengjiayi 已提交
513 514 515
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
516

517 518
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
519 520 521 522
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
523
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
524 525 526 527 528
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
529 530 531 532
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
533 534 535 536 537 538 539 540 541
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
542
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
543 544 545 546 547 548
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
549 550 551 552 553 554 555 556
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
557 558
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
559 560
        return self.op_proto_map[type]

561 562 563 564
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
565
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
566 567
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
568 569
        }

F
fengjiayi 已提交
570

X
Xin Pan 已提交
571
class Operator(object):
572
    """
573 574 575 576 577 578 579
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
580
        type(str): The type of operator. Default None.
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
601
        Block.append_op or Block._prepend_op instead.
602 603 604 605 606 607 608 609 610 611

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
612
    """
613 614 615
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
616 617
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
618
    }
619

Y
Yu Yang 已提交
620 621
    def __init__(self,
                 block,
Y
Yu Yang 已提交
622
                 desc,
Y
Yu Yang 已提交
623 624 625
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
626
                 attrs=None):
Y
Yu Yang 已提交
627
        self.block = block
Y
Yu Yang 已提交
628
        self.desc = desc
G
gongweibao 已提交
629 630 631 632 633
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
634 635 636 637
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
638 639
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
640 641 642

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
643 644
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
645

G
gongweibao 已提交
646 647
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
648

F
fengjiayi 已提交
649 650 651 652 653
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
654 655 656 657 658
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
659
        self.desc.set_type(type)
F
fengjiayi 已提交
660
        proto = OpProtoHolder.instance().get_op_proto(type)
661

662 663 664
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
665 666
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
667
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
668 669
                    return True
            return False
Q
QI JUN 已提交
670

Y
Yang Yang(Tony) 已提交
671 672 673 674 675 676 677
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
678 679 680 681
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
682 683
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
684 685 686
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
687
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
688
                            in_arg_names.append(arg)
689 690
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
691
                        else:
M
minqiyang 已提交
692
                            in_arg_names.append(cpt.to_text(arg.name))
693
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
694 695
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
696

Y
Yu Yang 已提交
697
        if outputs is not None:
698
            for m in proto.outputs:
Q
qingqing01 已提交
699 700 701 702 703 704
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
705
            for out_proto in proto.outputs:
Q
qingqing01 已提交
706 707
                if out_proto.name not in outputs:
                    continue
708 709 710 711
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
712 713
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
714 715 716
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
717
                    out_arg_names.append(cpt.to_text(arg.name))
718 719 720
                    # TODO(minqiyang): could we remove variable's op in static mode?
                    if not _in_imperative_mode():
                        arg.op = self
721
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
722

G
gongweibao 已提交
723 724
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
725
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
726
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
727
                attr_name = attr.name
G
gongweibao 已提交
728
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
729
                    continue
G
gongweibao 已提交
730
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
731 732
                self._update_desc_attr(attr_name, attr_val)

733
        self.desc.check_attrs()
M
minqiyang 已提交
734

W
Wu Yi 已提交
735
        if self._has_kernel(type):
Q
QI JUN 已提交
736
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
737
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
738

X
Xin Pan 已提交
739 740 741
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
742

X
Xin Pan 已提交
743
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
744
            if inputs is not None:
X
Xin Pan 已提交
745 746 747 748 749
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
750

X
Xin Pan 已提交
751
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
752
            if outputs is not None:
X
Xin Pan 已提交
753 754 755 756 757
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
758

W
Wu Yi 已提交
759
    def _has_kernel(self, op_type):
760 761
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
762
    def to_string(self, throw_on_error):
763
        """
764 765
        Get debug string.

766
        Args:
767 768
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
769

770 771
        Returns:
            str: The debug string.
772 773

        """
774
        protostr = self.desc.serialize_to_string()
775
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
776 777 778 779
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
780 781 782

    __repr__ = __str__

F
fengjiayi 已提交
783 784 785 786 787
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
788
        """
789
        Get the input arguments according to the input parameter name.
790

791 792
        Args:
            name(str): The input parameter name.
793

794 795 796
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
797
        """
F
fengjiayi 已提交
798 799
        return self.desc.input(name)

W
Wu Yi 已提交
800
    def _rename_input(self, old_name, new_name):
801 802 803 804 805 806 807 808 809 810
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
811
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
812

W
Wu Yi 已提交
813
    def _rename_output(self, old_name, new_name):
814 815 816 817 818 819 820 821 822 823
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
824
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
825

F
fengjiayi 已提交
826 827 828 829
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
830 831 832 833 834 835 836 837
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
838
    def output(self, name):
839
        """
840
        Get output arguments by the output parameter name.
841

842 843
        Args:
            name(str): The output parameter name.
844

845 846 847
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
848
        """
F
fengjiayi 已提交
849 850 851 852 853 854
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

855 856 857 858 859 860 861 862
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
863
    def has_attr(self, name):
864
        """
865 866
        Whether this Operator has the attribute with name or not.

867
        Args:
868
            name(str): the attribute name.
869

870 871
        Returns:
            bool: True if has this attribute.
872 873

        """
F
fengjiayi 已提交
874 875 876
        return self.desc.has_attr(name)

    def attr_type(self, name):
877
        """
878
        Get the type of attribute by attribute's name.
879

880 881
        Args:
            name(str): the attribute name.
882

883 884
        Returns:
            core.AttrType: the attribute type.
885
        """
F
fengjiayi 已提交
886 887
        return self.desc.attr_type(name)

W
Wu Yi 已提交
888
    def _set_attr(self, name, val):
889 890 891 892 893 894 895 896 897 898
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
912 913
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
914 915
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
916
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
917 918 919 920
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
921
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
922

F
fengjiayi 已提交
923 924 925 926 927
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
928
        """
929 930
        Get the attribute by name.

931
        Args:
932
            name(str): the attribute name.
933

934 935
        Returns:
            bool|int|str|float|list: The attribute value. The return value
936 937
            can be any valid attribute type.
        """
F
fengjiayi 已提交
938
        return self.desc.attr(name)
Y
Yu Yang 已提交
939

W
Wu Yi 已提交
940
    def _block_attr_id(self, name):
941
        """
G
gongweibao 已提交
942
        Get the block attribute's id by name.
943

944 945
        Args:
            name(str): the attribute name.
946

947 948
        Returns:
            int: the block index.
949
        """
W
Wu Yi 已提交
950
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
951

W
Wu Yi 已提交
952
    def _block_attr(self, name):
G
gongweibao 已提交
953 954 955 956 957 958 959 960 961 962
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
963
        id = self._block_attr_id(name)
G
gongweibao 已提交
964 965 966
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
967
    def _blocks_attr(self, name):
G
gongweibao 已提交
968 969 970 971 972 973 974 975 976 977
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
978
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
979 980 981 982 983
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
984
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
985 986 987 988 989 990 991 992 993 994
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
995
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
996

J
JiayiFeng 已提交
997
    def all_attrs(self):
F
fengjiayi 已提交
998
        """
999 1000 1001
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1002
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1003 1004 1005 1006
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1007 1008
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1009
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1010 1011 1012
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1013
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1014 1015 1016 1017
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1018 1019
        return attr_map

Y
Yu Yang 已提交
1020

Y
Yu Yang 已提交
1021
class Block(object):
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1036
        use `Program._create_block()` to create a block.
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1051
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1052
        self.desc = program.desc.block(idx)
1053
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1054
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1055
        self.program = program
1056
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1057

1058
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1059 1060
        return self.to_string(True)

F
fengjiayi 已提交
1061 1062
    def to_string(self, throw_on_error, with_details=False):
        """
1063 1064
        Get debug string.

F
fengjiayi 已提交
1065 1066
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1067
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1068
            with_details(bool): more details about variables and parameters
1069 1070
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1071

1072 1073
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1074 1075 1076 1077
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1078
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1079 1080
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1081
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1082
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1083
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1084
            for op in self.ops:
F
fengjiayi 已提交
1085 1086
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1087 1088 1089
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1090 1091
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1092 1093
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1094 1095 1096

    __repr__ = __str__

Y
Yu Yang 已提交
1097 1098
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1099
        return self.desc.parent
Y
Yu Yang 已提交
1100

Y
Yu Yang 已提交
1101 1102 1103 1104
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1105
    def _set_forward_block_idx(self, idx):
1106 1107 1108 1109 1110 1111 1112 1113 1114
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1115
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1116

Y
Yu Yang 已提交
1117 1118
    @property
    def idx(self):
Y
Yu Yang 已提交
1119
        return self.desc.id
Y
Yu Yang 已提交
1120

Q
Qiao Longfei 已提交
1121
    def var(self, name):
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1135
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1136 1137 1138
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1139 1140
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1141
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1142
        return v
Q
Qiao Longfei 已提交
1143

X
Xin Pan 已提交
1144
    def _find_var_recursive(self, name):
1145 1146 1147 1148 1149 1150 1151
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1152
            Variable: the Variable with the giving name. Or None if not found.
1153
        """
Y
Yu Yang 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1178
        return None
Y
Yu Yang 已提交
1179

X
Xin Pan 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1199

Q
Qiao Longfei 已提交
1200
    def all_parameters(self):
1201
        return list(self.iter_parameters())
1202

1203
    def iter_parameters(self):
M
minqiyang 已提交
1204
        return (item[1] for item in six.iteritems(self.vars)
1205
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1206

Y
Yu Yang 已提交
1207
    def create_var(self, *args, **kwargs):
1208
        var = Variable(block=self, *args, **kwargs)
1209 1210
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1211
        return var
Y
Yu Yang 已提交
1212

Q
Qiao Longfei 已提交
1213 1214 1215
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1216
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1217 1218
        """
        Rename variable in vars and ops' inputs and outputs
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1231
        """
M
minqiyang 已提交
1232 1233
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1234

T
typhoonzero 已提交
1235
        if not self.has_var(name):
1236
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1237 1238
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1239
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1240 1241 1242 1243 1244 1245 1246
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1247
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1248 1249 1250 1251
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1252
        orig_var_type = v.type
M
minqiyang 已提交
1253
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1254
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1255
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1256
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1257 1258 1259 1260
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1261
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1262 1263 1264 1265 1266 1267 1268
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1269
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1270 1271
            var = Variable(
                self,
T
typhoonzero 已提交
1272
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1273 1274 1275 1276
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1277
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1278 1279 1280
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1281
        self._sync_with_cpp()
1282
        return var
T
typhoonzero 已提交
1283

W
Wu Yi 已提交
1284
    def _remove_var(self, name):
M
minqiyang 已提交
1285
        self._sync_with_cpp()
M
minqiyang 已提交
1286
        self.desc._remove_var(cpt.to_bytes(name))
1287 1288
        del self.vars[name]

Y
Yu Yang 已提交
1289 1290
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1291
        param = Parameter(global_block, *args, **kwargs)
1292
        if 'initializer' in kwargs:
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1313
        return param
Y
Yu Yang 已提交
1314

Y
Yu Yang 已提交
1315
    def append_op(self, *args, **kwargs):
1316 1317 1318 1319 1320 1321
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1322
        op_desc = self.desc.append_op()
1323 1324 1325 1326 1327 1328 1329
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1330 1331 1332 1333 1334 1335

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1336 1337 1338 1339
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1340

1341 1342
        return op

W
Wu Yi 已提交
1343
    def _insert_op(self, index, *args, **kwargs):
1344 1345 1346 1347 1348 1349 1350 1351 1352
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1353 1354
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1355 1356 1357 1358
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1359
    def _remove_op(self, index):
1360 1361 1362 1363 1364 1365 1366 1367 1368
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
M
minqiyang 已提交
1369
        self._sync_with_cpp()
W
Wu Yi 已提交
1370
        self.desc._remove_op(index, index + 1)
1371 1372
        del self.ops[index]

W
Wu Yi 已提交
1373
    def _slice_ops(self, start, end):
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1384
        return self.ops[start:end]
Y
Yancey1989 已提交
1385

W
Wu Yi 已提交
1386 1387
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1388 1389 1390 1391 1392 1393 1394
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1395
        if _in_imperative_mode():
M
minqiyang 已提交
1396 1397 1398 1399
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1400 1401
        return op

W
Wu Yi 已提交
1402
    def _sync_with_cpp(self):
1403
        """
1404 1405
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1406
        """
Q
Qiao Longfei 已提交
1407 1408 1409 1410 1411
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1412
        # sync variables removed from c++ end
1413
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1414
            if not self.desc.find_var(cpt.to_bytes(var)):
1415 1416
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1417
        # sync operators from cpp
1418 1419 1420 1421
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1438 1439 1440 1441 1442

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1443
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1444 1445 1446 1447 1448 1449 1450

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1464 1465 1466 1467
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1468
    def _copy_param_info_from(self, other):
1469
        """
1470 1471
        Copy the information of parameters from the other block.

1472
        Args:
1473 1474 1475 1476 1477
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1478 1479 1480 1481 1482

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1483 1484
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1485
        for p in other.iter_parameters():
1486 1487 1488
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1489
                raise ValueError("_copy_param_info_from should be invoked with "
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1502
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1503
                error_clip=p.error_clip,
1504 1505 1506
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1507
    def _clone_variable(self, var):
1508 1509
        """
        Clone a variable into current block.
1510

1511 1512 1513 1514
        Args:
            var: the variable to be cloned.

        Returns:
1515
            Variable: the new  variable cloned from 'var' in current block.
1516 1517
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1518 1519 1520 1521 1522
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1523 1524
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1525
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1526 1527 1528 1529 1530 1531
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1532 1533
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1534 1535 1536 1537 1538 1539 1540
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1541 1542
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1543
        return ret_var
1544

Y
Yu Yang 已提交
1545

1546 1547
class IrGraph(object):
    """
1548 1549 1550 1551
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1552 1553 1554 1555
    """

    def __init__(self, graph, for_test=False):
        """
1556 1557
        Construct an IrGraph using core.Graph.

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1568 1569 1570
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1571 1572
        return self._for_test

W
WangZhen 已提交
1573
    def all_nodes(self):
1574 1575 1576
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1577
        return {node for node in self.graph.nodes()}
1578 1579

    def all_vars(self):
1580 1581 1582
        """
        Return all variable nodes included in the graph as a set.
        """
1583 1584
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1585
    def all_persistable_vars(self):
1586 1587 1588
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1589 1590 1591 1592 1593 1594 1595
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1596
    def all_ops(self):
1597 1598 1599
        """
        Return all operator nodes included in the graph as a set.
        """
1600 1601
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1602 1603
    def var_node(self, name):
        """
1604 1605
        Get a variable node by name from the graph.

W
WangZhen 已提交
1606 1607
        Args:
            name(str): the name of the variable node.
1608

W
WangZhen 已提交
1609 1610 1611
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1612

W
WangZhen 已提交
1613
        Returns:
1614
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1629
    def create_param_node(self, name, var_type, shape, var_dtype):
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1643 1644 1645 1646 1647 1648 1649 1650
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1665 1666 1667 1668 1669 1670 1671
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1682 1683 1684
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1697 1698
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1699
        for attr, value in six.iteritems(attrs):
1700
            self._update_desc_attr(op_desc, attr, value)
1701
        for input_name, var_nodes in six.iteritems(inputs):
1702 1703 1704 1705
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1706
        for output_name, var_nodes in six.iteritems(outputs):
1707 1708 1709 1710 1711 1712 1713
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1714 1715 1716 1717 1718 1719 1720 1721 1722
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1723 1724 1725
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1726 1727 1728 1729 1730 1731 1732 1733
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1734 1735 1736
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1737 1738 1739 1740 1741 1742 1743
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1744 1745 1746 1747 1748 1749 1750
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1751
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1752
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1753 1754 1755 1756
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1757 1758 1759 1760 1761 1762 1763
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1764
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1765 1766 1767 1768
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1769 1770
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1771
    def has_circle(self):
1772 1773 1774 1775 1776 1777
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1778 1779 1780
        return core.has_circle(self.graph)

    def graph_num(self):
1781 1782 1783 1784 1785 1786
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1787 1788 1789
        return core.graph_num(self.graph)

    def topology_sort(self):
1790 1791 1792 1793 1794 1795 1796 1797
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1798 1799 1800
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1801 1802 1803 1804 1805 1806
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1807 1808
        return core.build_adjacency_list(self.graph)

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1823 1824 1825 1826 1827 1828 1829 1830 1831
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1832 1833 1834 1835 1836 1837
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1838 1839
        ops_num = 0
        for node in self.graph.nodes():
1840
            if node.is_op():
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1867
        convert_pass = core.get_pass('graph_to_program_pass')
1868 1869
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1890
class Program(object):
D
dzhwinter 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1902
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1903 1904

    Returns:
Y
yuyang18 已提交
1905
        A empty program.
D
dzhwinter 已提交
1906 1907

    Examples:
Y
yuyang18 已提交
1908 1909 1910 1911 1912 1913
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1914 1915 1916

    """

1917 1918
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1919 1920
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1921
        self._seed = 0
Y
yuyang18 已提交
1922
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1923
        self._op_role_var = []
T
tangwei12 已提交
1924

1925 1926
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1927
        self._is_distributed = False
1928
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1929
        self._is_chief = False
1930 1931 1932
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1933
        self._endpoints = []
1934 1935 1936
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1937
        self._trainers_endpoints = []
1938
        # the distributed lookup table names
T
tangwei12 已提交
1939
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1940
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1941
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1942
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1943 1944

    @property
D
dzhwinter 已提交
1945
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1946 1947
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1948
        return self.__is_mem_optimized
D
dzhwinter 已提交
1949

D
dzhwinter 已提交
1950 1951 1952
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1953 1954 1955

    @property
    def op_role(self):
Y
yuyang18 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1969 1970 1971
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1972
    def op_role(self, role):
Y
yuyang18 已提交
1973 1974 1975 1976
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1977 1978 1979 1980 1981 1982 1983
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1984 1985 1986 1987
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1988
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1989

S
rename  
sneaxiy 已提交
1990
    @signature_safe_contextmanager
W
Wu Yi 已提交
1991
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1992 1993 1994 1995 1996 1997 1998
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1999
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2000 2001 2002 2003

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2004
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2005 2006
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2007 2008 2009
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2010 2011
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2012 2013 2014 2015
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2016
        yield
X
Xin Pan 已提交
2017 2018
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2019

S
rename  
sneaxiy 已提交
2020
    @signature_safe_contextmanager
X
Xin Pan 已提交
2021
    def _lr_schedule_guard(self, is_with_opt=False):
2022 2023 2024 2025 2026 2027 2028
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2029 2030 2031 2032
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2033 2034 2035 2036 2037 2038 2039

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2040 2041 2042 2043

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2044 2045
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2046 2047
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2048 2049 2050
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2051 2052
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2053

2054
    def __str__(self):
Y
yuyang18 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2064 2065
        return self.to_string(True)

F
fengjiayi 已提交
2066 2067 2068
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2069

F
fengjiayi 已提交
2070
        Args:
Y
yuyang18 已提交
2071 2072
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2073

Y
yuyang18 已提交
2074 2075 2076 2077
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2078 2079
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2080 2081 2082 2083

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2094 2095
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2096 2097
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2098

W
Wu Yi 已提交
2099
    def _get_desc(self):
Y
yuyang18 已提交
2100 2101 2102 2103 2104 2105 2106
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2107 2108
        return self.desc

X
version  
Xin Pan 已提交
2109 2110 2111
    def _version(self):
        return self.desc._version()

2112
    def clone(self, for_test=False):
Y
yuyang18 已提交
2113 2114 2115
        """
        Create a new, duplicated program.

2116

Y
yuyang18 已提交
2117 2118 2119 2120
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2121

Y
yuyang18 已提交
2122 2123 2124 2125
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2126 2127 2128 2129 2130
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2131 2132

        Args:
Y
yuyang18 已提交
2133 2134
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2135

D
dzhwinter 已提交
2136
        Returns:
Y
yuyang18 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2190 2191
        """
        if for_test:
X
Xin Pan 已提交
2192
            p = self._inference_optimize(prune_read_op=False)
2193
        else:
2194
            p = Program()
G
gongweibao 已提交
2195 2196
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2197
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2198 2199 2200
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2201 2202 2203 2204

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2205
            p._sync_with_cpp()
2206

W
Wu Yi 已提交
2207
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2208
        p._copy_data_info_from(self)
2209
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2210
        return p
2211

W
Wu Yi 已提交
2212
    def _prune(self, targets):
Y
yuyang18 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2228 2229 2230 2231 2232 2233
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2234 2235
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2236
                    # and we need to find the current op that generate this
2237 2238 2239 2240 2241 2242 2243 2244
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2245
                    t = t.op
2246 2247 2248 2249
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2250
                else:
2251 2252
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2253 2254 2255 2256

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2257 2258 2259
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2260
        res._sync_with_cpp()
2261 2262
        return res

X
Xin Pan 已提交
2263
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2264
        """
F
fengjiayi 已提交
2265 2266 2267 2268 2269
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2270
        3. change the :code:`is_test`
Y
yuyang18 已提交
2271 2272 2273
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2274
        Args:
X
Xin Pan 已提交
2275 2276
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2277

Y
yuyang18 已提交
2278 2279 2280 2281 2282 2283
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2284
        res = Program()
2285
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2286 2287 2288 2289

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2290
        if prune_read_op:
2291 2292 2293 2294 2295 2296 2297 2298 2299
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2300
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2301 2302

        # change all `is_test` attributes to True
M
minqiyang 已提交
2303
        for i in six.moves.range(res.desc.num_blocks()):
2304
            block = res.desc.block(i)
M
minqiyang 已提交
2305
            for j in six.moves.range(block.op_size()):
2306 2307
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2308
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2309 2310 2311
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2312
        res._sync_with_cpp()
2313 2314
        return res

2315 2316
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2317 2318 2319 2320 2321 2322 2323
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2324
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2325 2326 2327 2328

        Returns:
            Program: A deserialized program desc.
        """
2329 2330
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2331
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2332
        p._sync_with_cpp()
2333
        return p
Y
Yu Yang 已提交
2334

2335
    @staticmethod
2336
    def _construct_from_desc(desc):
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2352 2353
    @property
    def random_seed(self):
Y
yuyang18 已提交
2354 2355 2356 2357 2358 2359
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2360 2361
        return self._seed

Q
qiaolongfei 已提交
2362 2363
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2364 2365 2366
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2367 2368
        return self.desc.num_blocks()

D
dzhwinter 已提交
2369 2370 2371 2372 2373 2374
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2375
    def __repr__(self):
2376
        return self.__str__()
2377

Y
Yu Yang 已提交
2378
    def global_block(self):
Y
yuyang18 已提交
2379 2380 2381
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2382 2383
        return self.blocks[0]

Q
Qiao Longfei 已提交
2384
    def block(self, index):
Y
yuyang18 已提交
2385 2386 2387 2388 2389 2390 2391 2392
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2393 2394
        return self.blocks[index]

Y
Yu Yang 已提交
2395
    def current_block(self):
Y
yuyang18 已提交
2396 2397 2398 2399
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2400 2401
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2402
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2413
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2414 2415 2416
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2417 2418 2419 2420
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2421
    def _rollback(self):
Y
yuyang18 已提交
2422 2423 2424 2425 2426
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2427 2428
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2429
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2440 2441 2442
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2443
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2444

W
Wu Yi 已提交
2445
    def _copy_param_info_from(self, other):
2446
        """
2447
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2448

Y
yuyang18 已提交
2449 2450 2451
        Notes: This is a very low level API. Users should not invoke it
        directly.

2452 2453 2454 2455 2456 2457 2458
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2459
            raise TypeError("_copy_param_info_from should be invoked with "
2460 2461 2462
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2463
            raise ValueError("_copy_param_info_from should be invoked with two "
2464
                             "program, with represent the same topology")
W
Wu Yi 已提交
2465
        self.global_block()._copy_param_info_from(other.global_block())
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2482
        self._parameters_on_pservers = other._parameters_on_pservers
2483
        self._endpoints = other._endpoints
2484
        self._ps_endpoint = other._ps_endpoint
2485 2486
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2487
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2488 2489
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2490

Y
yuyang18 已提交
2491 2492 2493
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2494 2495 2496 2497 2498 2499 2500
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2501
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2502 2503 2504
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2505
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2506
                             "program, with represent the same topology")
2507
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2508 2509 2510
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2511
    def list_vars(self):
Y
yuyang18 已提交
2512 2513 2514 2515 2516 2517
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2518
        for each_block in self.blocks:
2519
            for each_var in list(each_block.vars.values()):
2520 2521
                yield each_var

Y
Yu Yang 已提交
2522

Y
Yu Yang 已提交
2523
class Parameter(Variable):
2524
    """
2525
    Parameter is derived from Variable. A parameter is a persistable
2526
    Variable, and will be updated by optimizers after each iteration.
2527
    The training of a neural network is essentially the updating of
2528 2529
    its parameters.

2530
    Relative to a general Variable, a Parameter has several its own
2531 2532
    member variables:

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2545 2546
    """

Y
Yu Yang 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2557 2558 2559

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2560 2561 2562 2563
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2564 2565
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2566
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2567

W
wanghaoshuang 已提交
2568
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2569

F
fengjiayi 已提交
2570 2571 2572
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2573 2574 2575
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2576

F
update  
fengjiayi 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2591
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2592
            for attr_name in additional_attr:
2593 2594
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2595 2596
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2597 2598 2599 2600
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2601

Y
Yu Yang 已提交
2602
# program is a global instance.
Y
Yu Yang 已提交
2603 2604
_main_program_ = Program()
_startup_program_ = Program()
2605

2606

2607
def default_startup_program():
Y
Yu Yang 已提交
2608
    """
Y
yuyang18 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2618

Y
Yu Yang 已提交
2619 2620 2621
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2622
    return _startup_program_
2623

2624

2625
def default_main_program():
Y
Yu Yang 已提交
2626
    """
Y
yuyang18 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2636

Y
Yu Yang 已提交
2637 2638 2639
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2640
    return _main_program_
Y
Yu Yang 已提交
2641 2642 2643 2644 2645


def switch_main_program(program):
    """
    Switch the main program to a new program.
2646

Y
Yu Yang 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2661
    Switch the startup program to a new program
Y
Yu Yang 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2674
@signature_safe_contextmanager
Y
Yu Yang 已提交
2675 2676
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2677 2678 2679
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2680

Y
Yu Yang 已提交
2681
    Examples:
Y
yuyang18 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2692

Y
Yu Yang 已提交
2693
    Examples:
Y
yuyang18 已提交
2694 2695 2696 2697 2698 2699

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2700

Y
Yu Yang 已提交
2701
    Args:
Y
yuyang18 已提交
2702
        main_program(Program): New main program inside `with` statement.
2703
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2717 2718


W
Wu Yi 已提交
2719
def _get_var(name, program=None):
X
xuwei06 已提交
2720
    """
Y
yuyang18 已提交
2721
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2722

X
xuwei06 已提交
2723 2724 2725
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2726
        If None, default_global_program() will be used.
X
xuwei06 已提交
2727 2728 2729 2730 2731 2732 2733

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2734
    assert isinstance(program, Program)
X
xuwei06 已提交
2735 2736

    return program.global_block().var(name)
2737 2738


S
rename  
sneaxiy 已提交
2739
@signature_safe_contextmanager
P
Paddle CI 已提交
2740
def _imperative_guard(tracer):
2741 2742 2743
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2744

P
Paddle CI 已提交
2745 2746 2747 2748 2749
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2750
@signature_safe_contextmanager
P
Paddle CI 已提交
2751
def _imperative_place_guard(place):
M
minqiyang 已提交
2752 2753 2754
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2755

2756
    yield
M
minqiyang 已提交
2757

M
minqiyang 已提交
2758
    _imperative_current_expected_place_ = tmp_place