framework.py 91.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306
        self.block = block
F
fengjiayi 已提交
307
        self.error_clip = error_clip
Y
Yu Yang 已提交
308 309

        if name is None:
Y
Yu Yang 已提交
310
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
311
        is_new_var = False
M
minqiyang 已提交
312
        name = cpt.to_text(name)
M
minqiyang 已提交
313
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
314 315

        if self.desc is None:
M
minqiyang 已提交
316
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
317
            is_new_var = True
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
327
        if shape is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
338
        if dtype is not None:
339
            if not isinstance(dtype, core.VarDesc.VarType):
340
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
341
            if is_new_var:
F
fengjiayi 已提交
342
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
343
            else:
F
fengjiayi 已提交
344
                old_dtype = self.dtype
Q
QI JUN 已提交
345
                if dtype != old_dtype:
Y
Yu Yang 已提交
346 347 348 349 350
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
351 352

        if lod_level is not None:
Y
Yu Yang 已提交
353
            if is_new_var:
354
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
355 356 357 358 359 360 361
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
362 363 364 365 366 367 368 369 370 371 372
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

373 374 375 376 377 378 379 380
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
381
        if _in_imperative_mode():
M
minqiyang 已提交
382
            # record vars in tracer rather than blocks
M
minqiyang 已提交
383 384
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
385
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
386
            self._ivar.desc = self.desc
387 388
            self._ivar.block = block.desc
            self._ivar.name = name
M
minqiyang 已提交
389 390
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
391 392 393 394 395
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
396

397
    def _numpy(self):
M
minqiyang 已提交
398
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
399
        return np.array(new_ivar.value().get_tensor())
400 401

    def _backward(self):
X
Xin Pan 已提交
402
        self._ivar._run_backward()
403 404

    def _gradient(self):
M
minqiyang 已提交
405
        return np.array(self._ivar._grad_value())
406

X
Xin Pan 已提交
407 408
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
409

410
    def __str__(self):
Y
Yang Yang(Tony) 已提交
411 412
        return self.to_string(True)

F
update  
fengjiayi 已提交
413
    def to_string(self, throw_on_error, with_details=False):
414 415 416 417
        """
        Get debug string.

        Args:
418 419
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
420
            with_details(bool): more details about variables and parameters
421 422
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
423

424 425
        Returns:
            str: The debug string.
426
        """
F
update  
fengjiayi 已提交
427 428
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
429
        protostr = self.desc.serialize_to_string()
430
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
431 432 433 434
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
435 436
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
437
        return res_str
438 439 440

    __repr__ = __str__

W
Wu Yi 已提交
441
    def _set_desc(self, input):
442 443 444 445 446 447 448 449 450
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
451 452
        self.desc = input

453 454
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
455 456 457 458
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
459 460 461

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
462 463 464
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
465

466 467 468 469
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
470 471 472 473
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
474 475
    @property
    def name(self):
M
minqiyang 已提交
476
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
477

T
typhoonzero 已提交
478 479 480 481
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
482 483 484
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
485
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
486 487

    @property
F
fengjiayi 已提交
488 489
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
490 491 492

    @property
    def lod_level(self):
493
        return self.desc.lod_level()
Y
Yu Yang 已提交
494

Y
Yu Yang 已提交
495 496 497 498
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
499
    def _set_error_clip(self, error_clip):
500 501 502 503 504 505 506 507 508
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
509 510
        self.error_clip = error_clip

Y
Yu Yang 已提交
511

F
fengjiayi 已提交
512 513 514
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
515

516 517
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
518 519 520 521
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
522
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
523 524 525 526 527
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
528 529 530 531
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
532 533 534 535 536 537 538 539 540
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
541
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
542 543 544 545 546 547
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
548 549 550 551 552 553 554 555
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
556 557
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
558 559
        return self.op_proto_map[type]

560 561 562 563
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
564
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
565 566
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
567 568
        }

F
fengjiayi 已提交
569

X
Xin Pan 已提交
570
class Operator(object):
571
    """
572 573 574 575 576 577 578
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
579
        type(str): The type of operator. Default None.
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
600
        Block.append_op or Block._prepend_op instead.
601 602 603 604 605 606 607 608 609 610

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
611
    """
612 613 614
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
615 616
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
617
    }
618

Y
Yu Yang 已提交
619 620
    def __init__(self,
                 block,
Y
Yu Yang 已提交
621
                 desc,
Y
Yu Yang 已提交
622 623 624
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
625
                 attrs=None):
Y
Yu Yang 已提交
626
        self.block = block
Y
Yu Yang 已提交
627
        self.desc = desc
G
gongweibao 已提交
628 629 630 631 632
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
633 634 635 636
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
637 638
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
639 640 641

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
642 643
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
644

G
gongweibao 已提交
645 646
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
647

F
fengjiayi 已提交
648 649 650 651 652
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
653 654 655 656 657
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
658
        self.desc.set_type(type)
F
fengjiayi 已提交
659
        proto = OpProtoHolder.instance().get_op_proto(type)
660

661 662 663
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
664 665
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
666
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
667 668
                    return True
            return False
Q
QI JUN 已提交
669

Y
Yang Yang(Tony) 已提交
670 671 672 673 674 675 676
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
677 678 679 680
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
681 682
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
683 684 685
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
686
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
687
                            in_arg_names.append(arg)
688 689
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
690
                        else:
M
minqiyang 已提交
691
                            in_arg_names.append(cpt.to_text(arg.name))
692
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
693 694
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
695

Y
Yu Yang 已提交
696
        if outputs is not None:
697
            for m in proto.outputs:
Q
qingqing01 已提交
698 699 700 701 702 703
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
704
            for out_proto in proto.outputs:
Q
qingqing01 已提交
705 706
                if out_proto.name not in outputs:
                    continue
707 708 709 710
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
711 712
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
713 714 715
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
716
                    out_arg_names.append(cpt.to_text(arg.name))
717 718
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
719

G
gongweibao 已提交
720 721
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
722
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
723
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
724
                attr_name = attr.name
G
gongweibao 已提交
725
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
726
                    continue
G
gongweibao 已提交
727
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
728 729
                self._update_desc_attr(attr_name, attr_val)

730
        self.desc.check_attrs()
M
minqiyang 已提交
731

W
Wu Yi 已提交
732
        if self._has_kernel(type):
Q
QI JUN 已提交
733
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
734
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
735

X
Xin Pan 已提交
736 737 738
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
739

X
Xin Pan 已提交
740
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
741
            if inputs is not None:
X
Xin Pan 已提交
742 743 744 745 746
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
747

X
Xin Pan 已提交
748
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
749
            if outputs is not None:
X
Xin Pan 已提交
750 751 752 753 754
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
755

W
Wu Yi 已提交
756
    def _has_kernel(self, op_type):
757 758
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
759
    def to_string(self, throw_on_error):
760
        """
761 762
        Get debug string.

763
        Args:
764 765
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
766

767 768
        Returns:
            str: The debug string.
769 770

        """
771
        protostr = self.desc.serialize_to_string()
772
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
773 774 775 776
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
777 778 779

    __repr__ = __str__

F
fengjiayi 已提交
780 781 782 783 784
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
785
        """
786
        Get the input arguments according to the input parameter name.
787

788 789
        Args:
            name(str): The input parameter name.
790

791 792 793
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
794
        """
F
fengjiayi 已提交
795 796
        return self.desc.input(name)

W
Wu Yi 已提交
797
    def _rename_input(self, old_name, new_name):
798 799 800 801 802 803 804 805 806 807
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
808
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
809

W
Wu Yi 已提交
810
    def _rename_output(self, old_name, new_name):
811 812 813 814 815 816 817 818 819 820
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
821
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
822

F
fengjiayi 已提交
823 824 825 826
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
827 828 829 830 831 832 833 834
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
835
    def output(self, name):
836
        """
837
        Get output arguments by the output parameter name.
838

839 840
        Args:
            name(str): The output parameter name.
841

842 843 844
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
845
        """
F
fengjiayi 已提交
846 847 848 849 850 851
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

852 853 854 855 856 857 858 859
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
860
    def has_attr(self, name):
861
        """
862 863
        Whether this Operator has the attribute with name or not.

864
        Args:
865
            name(str): the attribute name.
866

867 868
        Returns:
            bool: True if has this attribute.
869 870

        """
F
fengjiayi 已提交
871 872 873
        return self.desc.has_attr(name)

    def attr_type(self, name):
874
        """
875
        Get the type of attribute by attribute's name.
876

877 878
        Args:
            name(str): the attribute name.
879

880 881
        Returns:
            core.AttrType: the attribute type.
882
        """
F
fengjiayi 已提交
883 884
        return self.desc.attr_type(name)

W
Wu Yi 已提交
885
    def _set_attr(self, name, val):
886 887 888 889 890 891 892 893 894 895
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
909 910
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
911 912
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
913
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
914 915 916 917
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
918
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
919

F
fengjiayi 已提交
920 921 922 923 924
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
925
        """
926 927
        Get the attribute by name.

928
        Args:
929
            name(str): the attribute name.
930

931 932
        Returns:
            bool|int|str|float|list: The attribute value. The return value
933 934
            can be any valid attribute type.
        """
F
fengjiayi 已提交
935
        return self.desc.attr(name)
Y
Yu Yang 已提交
936

W
Wu Yi 已提交
937
    def _block_attr_id(self, name):
938
        """
G
gongweibao 已提交
939
        Get the block attribute's id by name.
940

941 942
        Args:
            name(str): the attribute name.
943

944 945
        Returns:
            int: the block index.
946
        """
W
Wu Yi 已提交
947
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
948

W
Wu Yi 已提交
949
    def _block_attr(self, name):
G
gongweibao 已提交
950 951 952 953 954 955 956 957 958 959
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
960
        id = self._block_attr_id(name)
G
gongweibao 已提交
961 962 963
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
964
    def _blocks_attr(self, name):
G
gongweibao 已提交
965 966 967 968 969 970 971 972 973 974
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
975
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
976 977 978 979 980
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
981
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
982 983 984 985 986 987 988 989 990 991
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
992
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
993

J
JiayiFeng 已提交
994
    def all_attrs(self):
F
fengjiayi 已提交
995
        """
996 997 998
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
999
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1000 1001 1002 1003
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1004 1005
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1006
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1007 1008 1009
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1010
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1011 1012 1013 1014
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1015 1016
        return attr_map

Y
Yu Yang 已提交
1017

Y
Yu Yang 已提交
1018
class Block(object):
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1033
        use `Program._create_block()` to create a block.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1048
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1049
        self.desc = program.desc.block(idx)
1050
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1051
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1052
        self.program = program
1053
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1054

1055
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1056 1057
        return self.to_string(True)

F
fengjiayi 已提交
1058 1059
    def to_string(self, throw_on_error, with_details=False):
        """
1060 1061
        Get debug string.

F
fengjiayi 已提交
1062 1063
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1064
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1065
            with_details(bool): more details about variables and parameters
1066 1067
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1068

1069 1070
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1071 1072 1073 1074
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1075
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1076 1077
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1078
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1079
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1080
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1081
            for op in self.ops:
F
fengjiayi 已提交
1082 1083
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1084 1085 1086
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1087 1088
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1089 1090
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1091 1092 1093

    __repr__ = __str__

Y
Yu Yang 已提交
1094 1095
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1096
        return self.desc.parent
Y
Yu Yang 已提交
1097

Y
Yu Yang 已提交
1098 1099 1100 1101
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1102
    def _set_forward_block_idx(self, idx):
1103 1104 1105 1106 1107 1108 1109 1110 1111
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1112
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1113

Y
Yu Yang 已提交
1114 1115
    @property
    def idx(self):
Y
Yu Yang 已提交
1116
        return self.desc.id
Y
Yu Yang 已提交
1117

Q
Qiao Longfei 已提交
1118
    def var(self, name):
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1132
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1133 1134 1135
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1136 1137
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1138
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1139
        return v
Q
Qiao Longfei 已提交
1140

X
Xin Pan 已提交
1141
    def _find_var_recursive(self, name):
1142 1143 1144 1145 1146 1147 1148
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1149
            Variable: the Variable with the giving name. Or None if not found.
1150
        """
Y
Yu Yang 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1175
        return None
Y
Yu Yang 已提交
1176

X
Xin Pan 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1196

Q
Qiao Longfei 已提交
1197
    def all_parameters(self):
1198
        return list(self.iter_parameters())
1199

1200
    def iter_parameters(self):
M
minqiyang 已提交
1201
        return (item[1] for item in six.iteritems(self.vars)
1202
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1203

Y
Yu Yang 已提交
1204
    def create_var(self, *args, **kwargs):
1205
        var = Variable(block=self, *args, **kwargs)
1206 1207
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1208
        return var
Y
Yu Yang 已提交
1209

Q
Qiao Longfei 已提交
1210 1211 1212
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1213
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1214 1215
        """
        Rename variable in vars and ops' inputs and outputs
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1228
        """
M
minqiyang 已提交
1229 1230
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1231

T
typhoonzero 已提交
1232
        if not self.has_var(name):
1233
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1234 1235
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1236
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1237 1238 1239 1240 1241 1242 1243
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1244
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1245 1246 1247 1248
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1249
        orig_var_type = v.type
M
minqiyang 已提交
1250
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1251
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1252
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1253
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1254 1255 1256 1257
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1258
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1259 1260 1261 1262 1263 1264 1265
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1266
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1267 1268
            var = Variable(
                self,
T
typhoonzero 已提交
1269
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1270 1271 1272 1273
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1274
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1275 1276 1277
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1278
        self._sync_with_cpp()
1279
        return var
T
typhoonzero 已提交
1280

W
Wu Yi 已提交
1281
    def _remove_var(self, name):
M
minqiyang 已提交
1282
        self._sync_with_cpp()
M
minqiyang 已提交
1283
        self.desc._remove_var(cpt.to_bytes(name))
1284 1285
        del self.vars[name]

Y
Yu Yang 已提交
1286 1287
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1288
        param = Parameter(global_block, *args, **kwargs)
1289
        if 'initializer' in kwargs:
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1310
        return param
Y
Yu Yang 已提交
1311

Y
Yu Yang 已提交
1312
    def append_op(self, *args, **kwargs):
1313 1314 1315 1316 1317 1318
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1319
        op_desc = self.desc.append_op()
1320 1321 1322 1323 1324 1325 1326
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1327 1328 1329 1330 1331 1332

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1333 1334 1335 1336
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1337

1338 1339
        return op

W
Wu Yi 已提交
1340
    def _insert_op(self, index, *args, **kwargs):
1341 1342 1343 1344 1345 1346 1347 1348 1349
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1350 1351
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1352 1353 1354 1355
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1356
    def _remove_op(self, index):
1357 1358 1359 1360 1361 1362 1363 1364 1365
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
M
minqiyang 已提交
1366
        self._sync_with_cpp()
W
Wu Yi 已提交
1367
        self.desc._remove_op(index, index + 1)
1368 1369
        del self.ops[index]

W
Wu Yi 已提交
1370
    def _slice_ops(self, start, end):
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1381
        return self.ops[start:end]
Y
Yancey1989 已提交
1382

W
Wu Yi 已提交
1383 1384
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1385 1386 1387 1388 1389 1390 1391
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1392
        if _in_imperative_mode():
M
minqiyang 已提交
1393 1394 1395 1396
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1397 1398
        return op

W
Wu Yi 已提交
1399
    def _sync_with_cpp(self):
1400
        """
1401 1402
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1403
        """
Q
Qiao Longfei 已提交
1404 1405 1406 1407 1408
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1409
        # sync variables removed from c++ end
1410
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1411
            if not self.desc.find_var(cpt.to_bytes(var)):
1412 1413
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1414
        # sync operators from cpp
1415 1416 1417 1418
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1435 1436 1437 1438 1439

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1440
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1441 1442 1443 1444 1445 1446 1447

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1461 1462 1463 1464
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1465
    def _copy_param_info_from(self, other):
1466
        """
1467 1468
        Copy the information of parameters from the other block.

1469
        Args:
1470 1471 1472 1473 1474
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1475 1476 1477 1478 1479

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1480 1481
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1482
        for p in other.iter_parameters():
1483 1484 1485
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1486
                raise ValueError("_copy_param_info_from should be invoked with "
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1499
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1500
                error_clip=p.error_clip,
1501 1502 1503
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1504
    def _clone_variable(self, var):
1505 1506
        """
        Clone a variable into current block.
1507

1508 1509 1510 1511
        Args:
            var: the variable to be cloned.

        Returns:
1512
            Variable: the new  variable cloned from 'var' in current block.
1513 1514
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1515 1516 1517 1518 1519
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1520 1521
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1522
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1523 1524 1525 1526 1527 1528
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1529 1530
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1531 1532 1533 1534 1535 1536 1537
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1538 1539
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1540
        return ret_var
1541

Y
Yu Yang 已提交
1542

1543 1544
class IrGraph(object):
    """
1545 1546 1547 1548
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1549 1550 1551 1552
    """

    def __init__(self, graph, for_test=False):
        """
1553 1554
        Construct an IrGraph using core.Graph.

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1565 1566 1567
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1568 1569
        return self._for_test

W
WangZhen 已提交
1570
    def all_nodes(self):
1571 1572 1573
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1574
        return {node for node in self.graph.nodes()}
1575 1576

    def all_vars(self):
1577 1578 1579
        """
        Return all variable nodes included in the graph as a set.
        """
1580 1581
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1582
    def all_persistable_vars(self):
1583 1584 1585
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1586 1587 1588 1589 1590 1591 1592
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1593
    def all_ops(self):
1594 1595 1596
        """
        Return all operator nodes included in the graph as a set.
        """
1597 1598
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1599 1600
    def var_node(self, name):
        """
1601 1602
        Get a variable node by name from the graph.

W
WangZhen 已提交
1603 1604
        Args:
            name(str): the name of the variable node.
1605

W
WangZhen 已提交
1606 1607 1608
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1609

W
WangZhen 已提交
1610
        Returns:
1611
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1626
    def create_param_node(self, name, var_type, shape, var_dtype):
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1640 1641 1642 1643 1644 1645 1646 1647
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1662 1663 1664 1665 1666 1667 1668
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1679 1680 1681
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1694 1695
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1696
        for attr, value in six.iteritems(attrs):
1697
            self._update_desc_attr(op_desc, attr, value)
1698
        for input_name, var_nodes in six.iteritems(inputs):
1699 1700 1701 1702
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1703
        for output_name, var_nodes in six.iteritems(outputs):
1704 1705 1706 1707 1708 1709 1710
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1711 1712 1713 1714 1715 1716 1717 1718 1719
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1720 1721 1722
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1723 1724 1725 1726 1727 1728 1729 1730
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1731 1732 1733
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1734 1735 1736 1737 1738 1739 1740
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1741 1742 1743 1744 1745 1746 1747
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1748
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1749
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1750 1751 1752 1753
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1754 1755 1756 1757 1758 1759 1760
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1761
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1762 1763 1764 1765
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1766 1767
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1768
    def has_circle(self):
1769 1770 1771 1772 1773 1774
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1775 1776 1777
        return core.has_circle(self.graph)

    def graph_num(self):
1778 1779 1780 1781 1782 1783
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1784 1785 1786
        return core.graph_num(self.graph)

    def topology_sort(self):
1787 1788 1789 1790 1791 1792 1793 1794
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1795 1796 1797
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1798 1799 1800 1801 1802 1803
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1804 1805
        return core.build_adjacency_list(self.graph)

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1820 1821 1822 1823 1824 1825 1826 1827 1828
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1829 1830 1831 1832 1833 1834
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1835 1836
        ops_num = 0
        for node in self.graph.nodes():
1837
            if node.is_op():
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1864
        convert_pass = core.get_pass('graph_to_program_pass')
1865 1866
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1887
class Program(object):
D
dzhwinter 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1899
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1900 1901

    Returns:
Y
yuyang18 已提交
1902
        A empty program.
D
dzhwinter 已提交
1903 1904

    Examples:
Y
yuyang18 已提交
1905 1906 1907 1908 1909 1910
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1911 1912 1913

    """

1914 1915
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1916 1917
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1918
        self._seed = 0
Y
yuyang18 已提交
1919
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1920
        self._op_role_var = []
T
tangwei12 已提交
1921

1922 1923
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1924
        self._is_distributed = False
1925
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1926
        self._is_chief = False
1927 1928 1929
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1930
        self._endpoints = []
1931 1932 1933
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1934
        self._trainers_endpoints = []
1935
        # the distributed lookup table names
T
tangwei12 已提交
1936
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1937
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1938
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1939
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1940 1941

    @property
D
dzhwinter 已提交
1942
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1943 1944
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1945
        return self.__is_mem_optimized
D
dzhwinter 已提交
1946

D
dzhwinter 已提交
1947 1948 1949
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1950 1951 1952

    @property
    def op_role(self):
Y
yuyang18 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1966 1967 1968
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1969
    def op_role(self, role):
Y
yuyang18 已提交
1970 1971 1972 1973
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1974 1975 1976 1977 1978 1979 1980
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1981 1982 1983 1984
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1985
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1986

S
rename  
sneaxiy 已提交
1987
    @signature_safe_contextmanager
W
Wu Yi 已提交
1988
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1989 1990 1991 1992 1993 1994 1995
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1996
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1997 1998 1999 2000

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2001
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2002 2003
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2004 2005 2006
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2007 2008
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2009 2010 2011 2012
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2013
        yield
X
Xin Pan 已提交
2014 2015
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2016

S
rename  
sneaxiy 已提交
2017
    @signature_safe_contextmanager
X
Xin Pan 已提交
2018
    def _lr_schedule_guard(self, is_with_opt=False):
2019 2020 2021 2022 2023 2024 2025
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2026 2027 2028 2029
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2030 2031 2032 2033 2034 2035 2036

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2037 2038 2039 2040

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2041 2042
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2043 2044
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2045 2046 2047
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2048 2049
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2050

2051
    def __str__(self):
Y
yuyang18 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2061 2062
        return self.to_string(True)

F
fengjiayi 已提交
2063 2064 2065
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2066

F
fengjiayi 已提交
2067
        Args:
Y
yuyang18 已提交
2068 2069
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2070

Y
yuyang18 已提交
2071 2072 2073 2074
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2075 2076
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2077 2078 2079 2080

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2091 2092
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2093 2094
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2095

W
Wu Yi 已提交
2096
    def _get_desc(self):
Y
yuyang18 已提交
2097 2098 2099 2100 2101 2102 2103
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2104 2105
        return self.desc

X
version  
Xin Pan 已提交
2106 2107 2108
    def _version(self):
        return self.desc._version()

2109
    def clone(self, for_test=False):
Y
yuyang18 已提交
2110 2111 2112
        """
        Create a new, duplicated program.

2113

Y
yuyang18 已提交
2114 2115 2116 2117
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2118

Y
yuyang18 已提交
2119 2120 2121 2122
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2123 2124 2125 2126 2127
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2128 2129

        Args:
Y
yuyang18 已提交
2130 2131
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2132

D
dzhwinter 已提交
2133
        Returns:
Y
yuyang18 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2187 2188
        """
        if for_test:
X
Xin Pan 已提交
2189
            p = self._inference_optimize(prune_read_op=False)
2190
        else:
2191
            p = Program()
G
gongweibao 已提交
2192 2193
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2194
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2195 2196 2197
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2198 2199 2200 2201

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2202
            p._sync_with_cpp()
2203

W
Wu Yi 已提交
2204
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2205
        p._copy_data_info_from(self)
2206
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2207
        return p
2208

W
Wu Yi 已提交
2209
    def _prune(self, targets):
Y
yuyang18 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2225 2226 2227 2228 2229 2230
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2231 2232
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2233
                    # and we need to find the current op that generate this
2234 2235 2236 2237 2238 2239 2240 2241
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2242
                    t = t.op
2243 2244 2245 2246
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2247
                else:
2248 2249
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2250 2251 2252 2253

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2254 2255 2256
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2257
        res._sync_with_cpp()
2258 2259
        return res

X
Xin Pan 已提交
2260
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2261
        """
F
fengjiayi 已提交
2262 2263 2264 2265 2266
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2267
        3. change the :code:`is_test`
Y
yuyang18 已提交
2268 2269 2270
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2271
        Args:
X
Xin Pan 已提交
2272 2273
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2274

Y
yuyang18 已提交
2275 2276 2277 2278 2279 2280
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2281
        res = Program()
2282
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2283 2284 2285 2286

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2287
        if prune_read_op:
2288 2289 2290 2291 2292 2293 2294 2295 2296
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2297
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2298 2299

        # change all `is_test` attributes to True
M
minqiyang 已提交
2300
        for i in six.moves.range(res.desc.num_blocks()):
2301
            block = res.desc.block(i)
M
minqiyang 已提交
2302
            for j in six.moves.range(block.op_size()):
2303 2304
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2305
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2306 2307 2308
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2309
        res._sync_with_cpp()
2310 2311
        return res

2312 2313
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2314 2315 2316 2317 2318 2319 2320
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2321
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2322 2323 2324 2325

        Returns:
            Program: A deserialized program desc.
        """
2326 2327
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2328
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2329
        p._sync_with_cpp()
2330
        return p
Y
Yu Yang 已提交
2331

2332
    @staticmethod
2333
    def _construct_from_desc(desc):
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2349 2350
    @property
    def random_seed(self):
Y
yuyang18 已提交
2351 2352 2353 2354 2355 2356
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2357 2358
        return self._seed

Q
qiaolongfei 已提交
2359 2360
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2361 2362 2363
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2364 2365
        return self.desc.num_blocks()

D
dzhwinter 已提交
2366 2367 2368 2369 2370 2371
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2372
    def __repr__(self):
2373
        return self.__str__()
2374

Y
Yu Yang 已提交
2375
    def global_block(self):
Y
yuyang18 已提交
2376 2377 2378
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2379 2380
        return self.blocks[0]

Q
Qiao Longfei 已提交
2381
    def block(self, index):
Y
yuyang18 已提交
2382 2383 2384 2385 2386 2387 2388 2389
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2390 2391
        return self.blocks[index]

Y
Yu Yang 已提交
2392
    def current_block(self):
Y
yuyang18 已提交
2393 2394 2395 2396
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2397 2398
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2399
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2410
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2411 2412 2413
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2414 2415 2416 2417
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2418
    def _rollback(self):
Y
yuyang18 已提交
2419 2420 2421 2422 2423
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2424 2425
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2426
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2437 2438 2439
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2440
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2441

W
Wu Yi 已提交
2442
    def _copy_param_info_from(self, other):
2443
        """
2444
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2445

Y
yuyang18 已提交
2446 2447 2448
        Notes: This is a very low level API. Users should not invoke it
        directly.

2449 2450 2451 2452 2453 2454 2455
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2456
            raise TypeError("_copy_param_info_from should be invoked with "
2457 2458 2459
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2460
            raise ValueError("_copy_param_info_from should be invoked with two "
2461
                             "program, with represent the same topology")
W
Wu Yi 已提交
2462
        self.global_block()._copy_param_info_from(other.global_block())
2463

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2479
        self._parameters_on_pservers = other._parameters_on_pservers
2480
        self._endpoints = other._endpoints
2481
        self._ps_endpoint = other._ps_endpoint
2482 2483
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2484
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2485 2486
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2487

Y
yuyang18 已提交
2488 2489 2490
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2491 2492 2493 2494 2495 2496 2497
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2498
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2499 2500 2501
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2502
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2503
                             "program, with represent the same topology")
2504
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2505 2506 2507
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2508
    def list_vars(self):
Y
yuyang18 已提交
2509 2510 2511 2512 2513 2514
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2515
        for each_block in self.blocks:
2516
            for each_var in list(each_block.vars.values()):
2517 2518
                yield each_var

Y
Yu Yang 已提交
2519

Y
Yu Yang 已提交
2520
class Parameter(Variable):
2521
    """
2522
    Parameter is derived from Variable. A parameter is a persistable
2523
    Variable, and will be updated by optimizers after each iteration.
2524
    The training of a neural network is essentially the updating of
2525 2526
    its parameters.

2527
    Relative to a general Variable, a Parameter has several its own
2528 2529
    member variables:

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2542 2543
    """

Y
Yu Yang 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2554 2555 2556

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2557 2558 2559 2560
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2561 2562
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2563
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2564

W
wanghaoshuang 已提交
2565
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2566

F
fengjiayi 已提交
2567 2568 2569
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2570 2571 2572
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2573

F
update  
fengjiayi 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2588
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2589
            for attr_name in additional_attr:
2590 2591
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2592 2593
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2594 2595 2596 2597
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2598

Y
Yu Yang 已提交
2599
# program is a global instance.
Y
Yu Yang 已提交
2600 2601
_main_program_ = Program()
_startup_program_ = Program()
2602

2603

2604
def default_startup_program():
Y
Yu Yang 已提交
2605
    """
Y
yuyang18 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2615

Y
Yu Yang 已提交
2616 2617 2618
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2619
    return _startup_program_
2620

2621

2622
def default_main_program():
Y
Yu Yang 已提交
2623
    """
Y
yuyang18 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2633

Y
Yu Yang 已提交
2634 2635 2636
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2637
    return _main_program_
Y
Yu Yang 已提交
2638 2639 2640 2641 2642


def switch_main_program(program):
    """
    Switch the main program to a new program.
2643

Y
Yu Yang 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2658
    Switch the startup program to a new program
Y
Yu Yang 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2671
@signature_safe_contextmanager
Y
Yu Yang 已提交
2672 2673
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2674 2675 2676
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2677

Y
Yu Yang 已提交
2678
    Examples:
Y
yuyang18 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2689

Y
Yu Yang 已提交
2690
    Examples:
Y
yuyang18 已提交
2691 2692 2693 2694 2695 2696

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2697

Y
Yu Yang 已提交
2698
    Args:
Y
yuyang18 已提交
2699
        main_program(Program): New main program inside `with` statement.
2700
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2714 2715


W
Wu Yi 已提交
2716
def _get_var(name, program=None):
X
xuwei06 已提交
2717
    """
Y
yuyang18 已提交
2718
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2719

X
xuwei06 已提交
2720 2721 2722
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2723
        If None, default_global_program() will be used.
X
xuwei06 已提交
2724 2725 2726 2727 2728 2729 2730

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2731
    assert isinstance(program, Program)
X
xuwei06 已提交
2732 2733

    return program.global_block().var(name)
2734 2735


S
rename  
sneaxiy 已提交
2736
@signature_safe_contextmanager
P
Paddle CI 已提交
2737
def _imperative_guard(tracer):
2738 2739 2740
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2741

P
Paddle CI 已提交
2742 2743 2744 2745 2746
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2747
@signature_safe_contextmanager
P
Paddle CI 已提交
2748
def _imperative_place_guard(place):
M
minqiyang 已提交
2749 2750 2751
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2752

2753
    yield
M
minqiyang 已提交
2754

M
minqiyang 已提交
2755
    _imperative_current_expected_place_ = tmp_place