analysis_predictor.cc 99.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <cstdlib>
N
nhzlx 已提交
21
#include <fstream>
22
#include <memory>
23
#include <set>
24
#include <string>
25
#include <utility>
26
#include <vector>
27

W
Wilber 已提交
28
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
29
#include "paddle/fluid/framework/feed_fetch_method.h"
30
#include "paddle/fluid/framework/feed_fetch_type.h"
31
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
32
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
33
#include "paddle/fluid/framework/ir/pass.h"
34
#include "paddle/fluid/framework/naive_executor.h"
35
#include "paddle/fluid/framework/op_proto_maker.h"
36
#include "paddle/fluid/framework/operator.h"
37
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
38
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
39
#include "paddle/fluid/framework/var_type_traits.h"
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/inference/analysis/helper.h"
42
#include "paddle/fluid/inference/analysis/pass_result_info.h"
43
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
44
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
45
#include "paddle/fluid/inference/api/helper.h"
46
#include "paddle/fluid/inference/api/infer_context.h"
47
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
48
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
49
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
50
#include "paddle/fluid/inference/api/resource_manager.h"
51
#include "paddle/fluid/inference/utils/io_utils.h"
52
#include "paddle/fluid/inference/utils/model_utils.h"
53
#include "paddle/fluid/inference/utils/singleton.h"
54
#include "paddle/fluid/memory/memcpy.h"
55
#include "paddle/fluid/platform/cpu_helper.h"
56
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
57
#include "paddle/fluid/platform/device_context.h"
58
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
59
#include "paddle/fluid/platform/profiler.h"
60
#include "paddle/phi/api/ext/op_meta_info.h"
61 62
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
63
#include "paddle/phi/common/place.h"
W
Wilber 已提交
64
#include "paddle/phi/core/enforce.h"
65 66
#include "paddle/utils/string/split.h"

67
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
68 69 70 71
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
72

73 74 75 76
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

77 78 79 80
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

81 82 83 84
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

85
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
86
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
87
#include "paddle/fluid/inference/tensorrt/helper.h"
88
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
89 90
#endif

91 92 93 94
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

95 96
namespace paddle {

N
nhzlx 已提交
97
using inference::Singleton;
98
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
99 100
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
101
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
102
#endif
103

104 105
int AnalysisPredictor::clone_num_ = 1;

106 107 108 109
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
110 111
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
112 113 114 115
    return true;
  }
  return false;
}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

135
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
136
  switch (backend) {
137
    case paddle_infer::PlaceType::kGPU:
138 139
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
140
    case paddle_infer::PlaceType::kNPU:
141
      return phi::Backend::NPU;
142
    case paddle_infer::PlaceType::kXPU:
143
      return phi::Backend::XPU;
144
    case paddle_infer::PlaceType::kCPU:
145
      return phi::Backend::CPU;
146 147
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
148 149 150 151 152 153 154
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
155 156
}  // namespace

C
ccrrong 已提交
157
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
158
                             phi::DenseTensor *t,
159
                             const platform::Place &place) {
160
  framework::DDim ddim = phi::make_ddim(pt.shape);
161 162 163 164 165 166 167
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
168 169
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
170 171 172 173
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
174 175 176
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
177 178 179
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
180 181 182 183 184 185 186 187
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
188 189 190 191 192
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
        t->numel() * paddle::experimental::SizeOf(t->dtype()),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
193
  }
194 195 196

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
197 198 199 200
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
201 202
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
203 204
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
205 206 207 208
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
209
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
210 211
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
212 213
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
214
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
215
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
216
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
217
    auto dst_gpu_place = place;
C
ccrrong 已提交
218 219 220 221 222
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
223 224 225 226 227
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
228 229
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
230
    auto dst_xpu_place = place;
C
ccrrong 已提交
231 232 233 234 235
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
236 237 238 239 240 241 242
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
243 244 245 246 247 248 249 250 251 252
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
253
bool AnalysisPredictor::Init(
254 255
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
256
  VLOG(3) << "Predictor::init()";
257 258
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
259 260
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
261
    platform::EnableProfiler(tracking_device);
262
  } else {
263 264
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
265 266
  }

267 268 269 270
  if (!status_is_cloned_) {
    root_predictor_id_ = predictor_id_;
  }

271
  // no matter with or without MKLDNN
L
luotao1 已提交
272
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
273

274 275 276
  if (!PrepareScope(parent_scope)) {
    return false;
  }
277 278 279

  InitPlace();

280 281 282 283 284 285 286
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

287 288 289
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

290 291 292
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
293
  }
294

295 296 297 298 299 300 301 302 303 304 305 306 307
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
308
        static_cast<phi::GPUContext *>(
309 310 311 312 313 314
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
315
  }
316
#endif
317
  inference::DisplayMemoryInfo(place_, "Init predictor");
318 319
  return true;
}
320

321
void AnalysisPredictor::InitPlace() {
322
  if (config_.use_gpu()) {
C
ccrrong 已提交
323 324
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
325 326
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
327
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
329
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
330 331
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
332 333
    }
#endif
334
  } else if (config_.use_xpu()) {
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
358 359 360 361 362 363 364 365
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
382 383 384 385 386 387 388
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
389 390 391 392 393 394 395 396 397
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
398
#endif
399 400 401
  } else {
    place_ = paddle::platform::CPUPlace();
  }
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
419
          auto *gpu_context = new InferGPUContext(place_);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
436 437 438 439
          gpu_context->SetHostZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(platform::CPUPlace())
                  .get());
440 441 442 443 444
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
445
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
446
          gpu_context->SetBlasTensorCoreHandle(
447 448 449 450 451 452 453 454
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
549 550
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
551 552 553 554 555
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
556 557 558 559 560
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
561 562 563 564 565 566 567 568
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
569 570 571
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
591 592
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
593 594 595 596 597 598 599 600 601
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
602 603
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
604 605
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
606 607 608
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
609 610 611
  }
}

612
bool AnalysisPredictor::PrepareExecutor() {
613
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
614 615 616 617 618
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
619 620
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
621 622
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
623

624 625 626 627 628 629 630 631 632
  if (config_.enable_memory_optim_) {
    auto *pass_res_info =
        inference::analysis::PassResultInfoForRuntime::Instance();
    auto reuse_table =
        pass_res_info->Get<std::unordered_map<std::string, std::string>>(
            root_predictor_id_, "memory_optimize_pass");
    executor_->MakeReusePlan(reuse_table);
  }

633 634 635
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
636

637 638 639
  return true;
}

640
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
677 678 679 680 681 682 683
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
720 721 722 723 724 725
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
726 727 728 729 730 731 732 733 734 735 736
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
737 738 739 740 741
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
798 799
      static_cast<bool>(fin.is_open()),
      true,
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

872 873
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
874 875 876 877 878 879 880 881 882 883 884 885
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
886
          << phi::OneDNNContext::tls().get_cur_mkldnn_session_id();
887 888 889
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
890 891
    phi::OneDNNContext::tls().set_cur_mkldnn_session_id(
        phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing);
892 893
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
894 895 896
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
897 898 899
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
900
    phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str());
901
  }
902
  phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity(
903 904
      config_.mkldnn_cache_capacity_);

905 906 907 908 909 910
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
911
  if (config_.mkldnn_cache_capacity_ > 0 &&
912
      static_cast<phi::OneDNNContext *>(
913 914
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
915
    if (VLOG_IS_ON(2)) {
916
      auto shape_blob_size = static_cast<phi::OneDNNContext *>(
917 918 919 920 921 922
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
923 924 925
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
926 927 928 929
  }
#endif
}

930 931 932
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
933
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
934 935 936
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
937
  VLOG(3) << "Predictor::predict";
938 939 940 941
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
942 943 944
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
945 946
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
947
    return false;
948
  }
M
Michal Gallus 已提交
949

950 951 952 953 954 955 956 957 958
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

959 960 961
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
962

963 964 965 966
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
967
  }
Y
Yan Chunwei 已提交
968

M
minqiyang 已提交
969
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
970

Y
Yan Chunwei 已提交
971 972 973 974 975
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
976 977 978
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
979
  tensor_array_batch_cleaner_.ResetNoTensorVars();
980 981 982 983

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
984 985
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
986
#endif
987
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
988 989 990 991
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
992
#endif
993 994
  return true;
}
995

996 997
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
998
  VLOG(3) << "Predictor::set_feed";
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
1009
    phi::DenseTensor *input = &feed_tensors_[i];
1010
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
1011 1012 1013
      return false;
    }
    int idx = -1;
1014
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
1015 1016
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
1017 1018
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1019 1020
      }
      idx = feed_names_[name];
1021
    } else {
R
Ruibiao Chen 已提交
1022
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1023
    }
1024
    framework::SetFeedVariable(scope, *input, "feed", idx);
1025 1026 1027 1028 1029
  }
  return true;
}

template <typename T>
1030
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1031 1032
                                    PaddleTensor *output) {
  // set shape.
1033
  auto shape = phi::vectorize(fetch.dims());
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1051
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1052 1053
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1054
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1055
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1056 1057
        static_cast<size_t>(idx),
        i,
1058
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1059 1060
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1061
            i));
1062
    framework::FetchType &fetch_var =
1063
        framework::GetFetchVariable(*scope, "fetch", idx);
1064
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1065
    auto type = framework::TransToProtoVarType(fetch.dtype());
1066
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1067
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1068
    if (type == framework::proto::VarType::FP32) {
1069 1070
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1071
    } else if (type == framework::proto::VarType::INT64) {
1072 1073
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1074 1075 1076
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1077 1078 1079
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1080
    } else {
1081 1082
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1083 1084
    }
  }
Y
Yan Chunwei 已提交
1085 1086
  return true;
}
1087

1088
void AnalysisPredictor::PrepareArgument() {
1089 1090 1091
  // Init std::unique_ptr argument_.
  argument_.reset(new Argument);
  argument_->SetUseGPU(config_.use_gpu());
1092
  argument_->SetUseCutlass(config_.use_cutlass_);
1093 1094 1095 1096 1097
  argument_->SetUseFcPadding(config_.use_fc_padding());
  argument_->SetGPUDeviceId(config_.gpu_device_id());
  argument_->SetEnableIrOptim(config_.enable_ir_optim_);
  argument_->SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_->SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1098
  // Analyze inference_program
1099 1100 1101
  argument_->SetPredictorID(predictor_id_);
  argument_->SetRootPredictorID(root_predictor_id_);
  argument_->SetOptimCacheDir(config_.opt_cache_dir_);
1102
  if (!config_.model_dir().empty()) {
1103
    argument_->SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1104
  } else {
C
ccrrong 已提交
1105 1106
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1107 1108
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1109

1110 1111
    argument_->SetModelProgramPath(config_.prog_file());
    argument_->SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1112
  }
1113
  // For JITLayer
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
  argument_->SetSkipLoadParams(config_.skip_load_params_);

  argument_->SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
  argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_);
  argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
  argument_->SetMinInputShape(config_.min_input_shape_);
  argument_->SetMaxInputShape(config_.max_input_shape_);
  argument_->SetOptimInputShape(config_.optim_input_shape_);
  argument_->SetTensorRtTunedDynamicShape(
1125
      config_.tuned_tensorrt_dynamic_shape());
1126
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1127
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    argument_->SetUseTensorRT(true);
    argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
    argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
    argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
    argument_->SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_->SetTensorRtDLACore(config_.trt_dla_core_);
    argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
    argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
    argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
    argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_->SetTensorRtAllowBuildAtRuntime(
1140
        config_.trt_allow_build_at_runtime());
1141 1142
    argument_->SetTensorRtUseInspector(config_.trt_use_inspector_);
    argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1143
  }
1144

D
denglin-github 已提交
1145 1146
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
1147 1148 1149 1150 1151 1152
    argument_->SetUseDlnne(true);
    argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
    argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_->SetDlnneDisableNodesByOutputs(
D
denglin-github 已提交
1153
        config_.dlnne_disable_nodes_by_outputs_);
1154 1155 1156
    argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
    argument_->SetDlnnePrecisionMode(config_.dlnne_precision_mode_);
D
denglin-github 已提交
1157 1158
  }

石晓伟 已提交
1159
  if (config_.lite_engine_enabled()) {
1160
    argument_->SetCpuMathLibraryNumThreads(
W
Wilber 已提交
1161
        config_.cpu_math_library_num_threads());
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    argument_->SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_->SetLitePassesFilter(config_.lite_passes_filter_);
    argument_->SetLiteOpsFilter(config_.lite_ops_filter_);
    argument_->SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_->SetUseXpu(config_.use_xpu_);
    argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
    argument_->SetXpuLocked(config_.xpu_locked_);
    argument_->SetXpuAutotune(config_.xpu_autotune_);
    argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_->SetXpuPrecision(config_.xpu_precision_);
    argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
    argument_->SetXpuDeviceId(config_.xpu_device_id_);
    argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
    argument_->SetUseOpenCL(config_.use_opencl_);
1176
    // NNAdapter related
1177 1178
    argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_->SetNNAdapterDeviceNames(
1179
        config_.NNAdapter().nnadapter_device_names);
1180
    argument_->SetNNAdapterContextProperties(
1181
        config_.NNAdapter().nnadapter_context_properties);
1182
    argument_->SetNNAdapterModelCacheDir(
1183
        config_.NNAdapter().nnadapter_model_cache_dir);
1184
    argument_->SetNNAdapterSubgraphPartitionConfigBuffer(
1185
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
1186
    argument_->SetNNAdapterSubgraphPartitionConfigPath(
1187 1188 1189 1190 1191 1192 1193
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
1194 1195
    argument_->SetNNAdapterModelCacheToken(buffer_keys);
    argument_->SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1196 1197 1198
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1199
#ifdef PADDLE_WITH_IPU
1200 1201 1202 1203 1204 1205 1206 1207
  argument_->SetUseIpu(config_.use_ipu_);
  argument_->SetIpuDeviceNum(config_.ipu_device_num());
  argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
  argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
  argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_->SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_->SetIpuAvailableMemoryProportion(
1208
      config_.ipu_available_memory_proportion_);
1209 1210
  argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
  argument_->SetIpuEnableModelRuntimeExecutor(
1211
      config_.ipu_enable_model_runtime_executor_);
1212 1213
  argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1214
#endif
J
jianghaicheng 已提交
1215

1216 1217
  argument_->SetUseNpu(config_.use_npu_);
  argument_->SetNPUDeviceId(config_.npu_device_id());
1218

1219
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1220
    LOG(INFO) << "MKLDNN is enabled";
1221
    argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
1222 1223
  }

1224
  if (config_.use_cinn_compiler_) {
1225
    argument_->SetUseCinnCompiler(config_.use_cinn_compiler_);
1226 1227
  }

1228 1229 1230
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
1231
    argument_->SetQuantizeEnabledOpTypes(
1232
        config_.mkldnn_quantizer_config()->enabled_op_types());
1233
    argument_->SetQuantizeExcludedOpIds(
1234 1235
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1236 1237
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
1238
    argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
1239
  }
B
baoachun 已提交
1240 1241 1242

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
1243 1244 1245
    argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_->SetQuantVarScales({});
B
baoachun 已提交
1246
  }
1247 1248
#endif

1249
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1250
  argument_->SetUseCustomDevice(config_.use_custom_device());
1251 1252
  if (config_.use_custom_device()) {
    LOG(INFO) << "CustomDevice is enabled";
1253 1254
    argument_->SetCustomDeviceType(config_.custom_device_type());
    argument_->SetCustomDeviceId(config_.custom_device_id());
1255 1256 1257
  }
#endif

1258
  auto *pass_builder = config_.pass_builder();
1259 1260
  // TODO(inference): Need to reconstruct the pass_builder, pass should be
  // processed in a single
1261 1262 1263 1264
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    if (!config_.use_cinn_compiler_) {
      pass_builder->ClearPasses();
      const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
      if (config_.tensorrt_engine_enabled()) {
        for (const auto &pass : kTrtLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
      } else if (config_.use_gpu()) {
        for (const auto &pass : kGpuLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
1278 1279 1280
      }
    }
  }
1281

Y
Yan Chunwei 已提交
1282
  if (!config_.ir_optim()) {
1283
    argument_->SetEnableIrOptim(false);
1284
    if (config_.enable_gpu_mixed_) {
1285
      argument_->SetEnableIrOptim(true);
1286
      pass_builder->ClearPasses();
1287
      pass_builder->AppendPass("auto_mixed_precision_pass");
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
      LOG(INFO)
          << "This model run in Paddle-GPU mixed precision mode with no ir "
             "optimization.";
    } else {
      LOG(INFO) << "ir_optim is turned off, no IR pass will be executed.";
    }
  } else {
    if (config_.ir_debug_) {
      pass_builder->TurnOnDebug();
    }
1298
    if (config_.enable_gpu_mixed_) {
1299 1300
      LOG(INFO) << "This model run in Paddle-GPU mixed precision mode.";
    }
Y
Yan Chunwei 已提交
1301
  }
1302 1303 1304 1305
  argument_->SetDisableLogs(config_.glog_info_disabled());
  argument_->SetIrAnalysisPasses(pass_builder->AllPasses());
  argument_->SetAnalysisPasses(pass_builder->AnalysisPasses());
  argument_->SetScopeNotOwned(scope_.get());
1306

1307
  // mixed precison.
1308 1309 1310 1311
  argument_->SetModelPrecision(static_cast<int>(model_precision_));
  argument_->SetMixedBlackList(config_.mixed_black_list_);
  argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_);
  argument_->SetMixedPrecisionMode(static_cast<int>(
1312
      paddle::ConvertPrecision(config_.mixed_precision_mode_)));
1313 1314 1315 1316 1317
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1328
  Analyzer().Run(argument_.get());
1329

1330
  PADDLE_ENFORCE_EQ(
1331
      argument_->scope_valid(),
C
ccrrong 已提交
1332
      true,
1333
      platform::errors::InvalidArgument("The argument scope should be valid."));
1334
  VLOG(5) << "to prepare executor";
1335
  ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program);
Y
Yan Chunwei 已提交
1336
  inference_program_.reset(
1337
      new framework::ProgramDesc(argument_->ir_analyzed_program()),
1338 1339 1340
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1341
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1342 1343 1344 1345
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1346
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1347
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1348
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1360 1361 1362
#endif
        delete prog;
      });
1363 1364 1365
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  config_.PartiallyRelease();
X
xiaoxiaohehe001 已提交
1366
#if defined(PADDLE_WITH_TESTING)
1367
  fusion_statis_ = *argument_->fusion_statis_ptr();
X
xiaoxiaohehe001 已提交
1368 1369
#endif

1370 1371 1372
#if defined(_WIN32)
  argument_->PartiallyRelease();
#else
X
xiaoxiaohehe001 已提交
1373 1374 1375
  if (config_.mkldnn_enabled() ||
      (config_.tensorrt_engine_enabled() &&
       config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) {
1376 1377 1378 1379 1380
    argument_->PartiallyRelease();
  } else {
    argument_.reset(nullptr);
  }
#endif
1381
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1382
}
1383 1384

template <>
1385 1386 1387
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
1388
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1389 1390
      config.is_valid(),
      true,
1391 1392
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1393

1394 1395 1396 1397
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1398
                 []() { inference::RegisterAllCustomOperator(); });
1399

1400 1401 1402 1403 1404 1405
  auto SetGflags = [](const AnalysisConfig &config) {
    auto SetGflag = [](const char *name, const char *value) {
      std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value);
      PADDLE_ENFORCE_EQ(
          ret.empty(),
          false,
1406
          platform::errors::InvalidArgument(
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
              "Fail to set gflag: %s, please make sure the gflag exists.",
              name));
      VLOG(3) << "set gflag: --" << name << "=" << value;
    };
    // TODO(NHZlX): Should add the link to the doc of
    // paddle_infer::CreatePredictor<paddle_infer::Config>
    if (config.glog_info_disabled()) {
      FLAGS_logtostderr = 1;
      FLAGS_minloglevel = 2;  // GLOG_ERROR
    }
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    if (config.use_gpu()) {
      static std::once_flag gflags_initialized;
      static bool process_level_allocator_enabled;

      std::call_once(gflags_initialized, [&]() {
        PADDLE_ENFORCE_GE(
            config.memory_pool_init_size_mb(),
            0.f,
            platform::errors::InvalidArgument(
                "The size of memory pool should be greater than 0."));
        PADDLE_ENFORCE_GE(config.gpu_device_id(),
                          0,
                          platform::errors::InvalidArgument(
                              "Invalid device id (%d). The device id should be "
                              "greater than 0.",
                              config.gpu_device_id()));

        float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
        if (fraction_of_gpu_memory > 0.95f) {
          LOG(ERROR)
              << "Allocate too much memory for the GPU memory pool, assigned "
              << config.memory_pool_init_size_mb() << " MB";
          LOG(ERROR) << "Try to shink the value by setting "
                        "AnalysisConfig::EnableUseGpu(...)";
        }
        if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
          std::string value = std::to_string(fraction_of_gpu_memory);
          SetGflag("fraction_of_gpu_memory_to_use", value.data());
        }
1447

1448 1449 1450 1451 1452 1453 1454 1455
        // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
        // allocator when multi-stream is enabled.
        if (config.thread_local_stream_enabled()) {
          SetGflag("allocator_strategy", "thread_local");
          process_level_allocator_enabled = false;
        } else {
          process_level_allocator_enabled = true;
        }
1456

1457 1458 1459
        // for inference, the following default values are better.
        if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) {
          SetGflag("conv_workspace_size_limit", "32");
1460
        }
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) {
          SetGflag("initial_cpu_memory_in_mb", "0");
        }

        // support set gflags from environment.
        std::vector<std::string> gflags;
        const phi::ExportedFlagInfoMap &env_map = phi::GetExportedFlagInfoMap();
        std::ostringstream os;
        for (auto &pair : env_map) {
          os << pair.second.name << ",";
        }
        std::string tryfromenv_str = os.str();
        if (!tryfromenv_str.empty()) {
          tryfromenv_str.pop_back();
          tryfromenv_str = "--tryfromenv=" + tryfromenv_str;
          gflags.push_back(tryfromenv_str);
        }
        if (framework::InitGflags(gflags)) {
          VLOG(3)
              << "The following gpu analysis configurations only take effect "
                 "for the first predictor: ";
          for (const auto &gflag : gflags) {
            VLOG(3) << gflag;
          }
        } else {
          LOG(WARNING) << "The one-time configuration of analysis predictor "
                          "failed, which may be due to native predictor called "
                          "first and its configurations taken effect.";
        }
      });

      if (config.thread_local_stream_enabled() &&
          process_level_allocator_enabled) {
        PADDLE_THROW(platform::errors::Fatal(
            "When binding threads and streams, the use of "
            "process-level allocators will result in undefined result "
            "errors due to memory asynchronous operations."
            "The thread and stream binding configuration of all "
            "predictors should be the same in a single process."));
1500
      }
1501
    }
1502 1503 1504 1505
  };
  SetGflags(config);

  VLOG(3) << "create AnalysisPredictor";
1506 1507

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1508 1509
  // Each config can only be used for one predictor.
  config.SetInValid();
1510 1511
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1512 1513 1514 1515
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1516 1517 1518 1519 1520
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1521 1522
    return nullptr;
  }
1523

G
Gabor Buella 已提交
1524
  return predictor;
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1539
void AnalysisPredictor::PrepareFeedFetch() {
1540 1541 1542
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1543
  CreateFeedFetchVar(sub_scope_);
1544 1545
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
1546
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1547 1548 1549 1550 1551
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1552
      idx2feeds_[idx] = op->Output("Out")[0];
1553
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
1554
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1555 1556
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1557
      }
Y
Yan Chunwei 已提交
1558
      fetches_[idx] = op;
N
nhzlx 已提交
1559
      idx2fetches_[idx] = op->Input("X")[0];
1560 1561 1562 1563
    }
  }
}

1564
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1565 1566 1567
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1568
  auto *var = scope->Var("feed");
1569
  var->GetMutable<framework::FeedList>();
1570
  var = scope->Var("fetch");
1571
  var->GetMutable<framework::FetchList>();
1572 1573
}

N
nhzlx 已提交
1574 1575 1576 1577 1578 1579 1580 1581
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1582 1583 1584 1585 1586 1587
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1588 1589 1590
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1591 1592 1593 1594 1595
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1627 1628 1629 1630 1631 1632 1633 1634
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetOutputTensorShape() {
  std::map<std::string, std::vector<int64_t>> output_shapes;
  std::vector<std::string> names = GetOutputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::PreconditionNotMet(
                                "Output %s does not exist.", name));
    output_shapes[name] = var->GetShape();
  }
  return output_shapes;
}

std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetOutputTypes() {
  std::map<std::string, paddle_infer::DataType> output_type;
  std::vector<std::string> names = GetOutputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Output %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      output_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      output_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      output_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      output_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      output_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      output_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get output dtype ", dtype));
    }
  }
  return output_type;
}

1680 1681
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1682
  framework::Scope *scope;
1683
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1684 1685 1686
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1687
    scope = executor_->GetScope();
1688 1689
  }
#else
1690
  scope = executor_->GetScope();
1691
#endif
1692
  PADDLE_ENFORCE_NOT_NULL(
1693
      scope->FindVar(name),
1694
      platform::errors::PreconditionNotMet(
1695
          "The variable named %s is not found in the scope of the executor.",
1696
          name));
1697 1698
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1699 1700
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1701 1702
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1703 1704 1705 1706
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1707
  } else if (platform::is_xpu_place(place_)) {
1708 1709 1710 1711 1712 1713 1714 1715
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1716
      auto xpu_place = place_;
1717 1718
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1719
  } else if (platform::is_npu_place(place_)) {
1720
    auto npu_place = place_;
W
Wilber 已提交
1721
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1722 1723 1724 1725
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1726 1727
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1728
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1729
  } else {
1730
    auto gpu_place = place_;
N
nhzlx 已提交
1731 1732
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1733 1734 1735 1736 1737
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1738
  framework::Scope *scope;
1739
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1740 1741 1742
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1743
    scope = executor_->GetScope();
1744 1745
  }
#else
1746
  scope = executor_->GetScope();
1747
#endif
1748
  PADDLE_ENFORCE_NOT_NULL(
1749
      scope->FindVar(name),
1750
      platform::errors::PreconditionNotMet(
1751
          "The variable named %s is not found in the scope of the executor.",
1752
          name));
1753 1754
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1755 1756
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1757 1758
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1759 1760 1761 1762
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1763
  } else if (platform::is_xpu_place(place_)) {
1764 1765 1766 1767 1768 1769 1770 1771
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1772
      auto xpu_place = place_;
1773 1774
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1775
  } else if (platform::is_npu_place(place_)) {
1776
    auto npu_place = place_;
W
Wilber 已提交
1777
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1778 1779 1780 1781
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1782 1783
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1784
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1785
  } else {
1786
    auto gpu_place = place_;
N
nhzlx 已提交
1787 1788
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1789 1790 1791 1792
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1793
  inference::DisplayMemoryInfo(place_, "before run");
1794
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1805 1806 1807
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1808
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1830
  executor_->Run();
1831
  inference::DisplayMemoryInfo(place_, "after run");
1832 1833 1834 1835 1836

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1837
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1838
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1839
  tensor_array_batch_cleaner_.ResetTensorArray();
1840 1841 1842 1843

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1844 1845 1846
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1847 1848 1849
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1850
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1851 1852 1853 1854 1855
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1856 1857 1858
  return true;
}

W
Wilber 已提交
1859 1860
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
1886 1887 1888 1889
  return ZeroCopyRun();
}
#endif

1890 1891 1892 1893 1894 1895
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1896
    auto gpu_place = place_;
L
Leo Chen 已提交
1897
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(gpu_place));
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
1909
    if (!var->IsType<phi::DenseTensor>()) {
1910 1911
      continue;
    }
1912 1913
    auto tensor = var->Get<phi::DenseTensor>();
    framework::DDim dim = tensor.dims();
1914 1915 1916
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
    if (tensor.dtype() == paddle::experimental::DataType::INT32 &&
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
      if (tensor.place() == platform::CPUPlace()) {
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int));
      } else if (tensor.place() == platform::CUDAPlace()) {
#if defined(PADDLE_WITH_CUDA)
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CUDAPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int),
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
1945 1946 1947 1948 1949 1950 1951
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
2007 2008
}

2009 2010
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
2011
  std::string filename;
2012 2013
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
2014
  } else if (!config_.prog_file().empty()) {
2015 2016 2017
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
2018
    filename = config_.prog_file();
2019
  } else {
2020
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
2021 2022 2023 2024
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
2025
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
2026 2027
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
2028
        config_.params_file());
2029 2030
    return false;
  }
2031 2032 2033

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
2034
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
2035 2036 2037
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
2038
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
2039 2040
        static_cast<bool>(fin.is_open()),
        true,
2041 2042 2043
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
2044 2045 2046 2047 2048 2049 2050 2051
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
2052
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
2053
  }
2054 2055 2056 2057 2058 2059
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
2060 2061
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

2083
      if (!config_.params_file().empty()) {
2084 2085 2086 2087 2088 2089
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
2090
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
2091 2092 2093 2094 2095
        op->CheckAttrs();
      }
    }
  }

2096
  if (!config_.params_file().empty()) {
2097 2098 2099 2100 2101 2102
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
2103
    op->SetAttr("file_path", {config_.params_file()});
2104 2105 2106 2107
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
2108
  framework::NaiveExecutor e(place_);
2109 2110 2111 2112
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

2113 2114
  return true;
}
2115

2116 2117 2118 2119 2120
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

2121 2122 2123 2124 2125 2126 2127 2128
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
2129
      auto *variable = executor_->GetScope()->FindVar(name);
2130
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2131 2132
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2133
        auto *t = variable->GetMutable<phi::DenseTensor>();
2134 2135 2136 2137 2138 2139
        t->clear();
      }
    }
  }
}

2140
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2141
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2142 2143
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2144 2145
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2146 2147 2148
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2149
      std::string engine_name = PADDLE_GET_CONST(
2150
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2151
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2152 2153 2154 2155
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2156 2157
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2158
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2159
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2160 2161
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2162 2163 2164
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2165

N
nhzlx 已提交
2166
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2167 2168 2169
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2170

N
nhzlx 已提交
2171
      std::string model_opt_cache_dir =
2172 2173 2174
          argument_->Has("model_dir") ? argument_->model_dir()
                                      : inference::analysis::GetDirRoot(
                                            argument_->model_program_path());
N
nhzlx 已提交
2175

N
nhzlx 已提交
2176
      std::string calibration_table_data_path =
N
nhzlx 已提交
2177 2178 2179 2180
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2181 2182 2183 2184 2185

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2186 2187 2188 2189
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2190
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2191 2192
  return true;
}
N
nhzlx 已提交
2193
#endif
N
nhzlx 已提交
2194

2195
AnalysisPredictor::~AnalysisPredictor() {
2196
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2197
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2198 2199
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2200 2201
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2202
#endif
2203
  if (config_.with_profile_) {
2204 2205 2206 2207
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2217 2218
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2219

2220 2221 2222 2223 2224 2225
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2226

2227 2228 2229
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2230 2231 2232 2233 2234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
2235 2236 2237
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2238
  device_contexts_.clear();
2239 2240 2241 2242 2243 2244 2245

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2246 2247
}

2248
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
2249
  std::lock_guard<std::mutex> lk(clone_mutex_);
2250
  auto *x = new AnalysisPredictor(config_);
2251
  x->status_is_cloned_ = true;
2252
  x->root_predictor_id_ = this->root_predictor_id_;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2263
  x->Init(scope_, inference_program_);
2264
#ifdef PADDLE_WITH_TENSORRT
2265
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2266
#endif
2267 2268 2269
  return std::unique_ptr<PaddlePredictor>(x);
}

2270
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2271 2272 2273
  return inference_program_->Proto()->SerializeAsString();
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
void AnalysisPredictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  static std::once_flag register_hook_flag;
  std::call_once(register_hook_flag, [this] {
    executor_->RegisterOutputHook([this](framework::OperatorBase *op) {
      for (auto &output : op->Outputs()) {
        for (auto &var_name : output.second) {
          auto *var = this->sub_scope_->FindVar(var_name);
          if (!var || !var->IsType<phi::DenseTensor>()) continue;
          auto dense_tensor = var->Get<phi::DenseTensor>();
          if (!dense_tensor.initialized()) continue;
          auto tensor = this->GetOutputTensor(var_name);
          for (auto &hookfunc : this->hookfuncs_) {
            hookfunc(op->Type(), var_name, *tensor);
          }
        }
      }
    });
  });
  hookfuncs_.push_back(hookfunc);
}

Y
Yan Chunwei 已提交
2334
template <>
2335 2336
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2337
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2338 2339
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2340 2341
}

2342
}  // namespace paddle
2343

2344
#ifdef PADDLE_WITH_TENSORRT
2345
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2346 2347 2348
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2349 2350
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2351
USE_TRT_CONVERTER(elementwise_pow_weight);
W
wenbin 已提交
2352
USE_TRT_CONVERTER(elementwise_floordiv_weight);
2353 2354 2355 2356 2357 2358 2359
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
W
wenbin 已提交
2360
USE_TRT_CONVERTER(elementwise_floordiv_tensor);
2361 2362 2363 2364 2365 2366
USE_TRT_CONVERTER(less_than);
USE_TRT_CONVERTER(greater_than);
USE_TRT_CONVERTER(logical_or);
USE_TRT_CONVERTER(logical_xor);
USE_TRT_CONVERTER(logical_and);
USE_TRT_CONVERTER(less_equal);
2367
USE_TRT_CONVERTER(transpose);
2368
USE_TRT_CONVERTER(transpose2);
2369
USE_TRT_CONVERTER(flatten);
2370
USE_TRT_CONVERTER(flatten_contiguous_range);
2371
USE_TRT_CONVERTER(matmul);
2372
USE_TRT_CONVERTER(matmul_v2);
2373
USE_TRT_CONVERTER(bmm);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2384 2385
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2386
USE_TRT_CONVERTER(split);
2387
USE_TRT_CONVERTER(fill_any_like);
2388 2389
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2390
USE_TRT_CONVERTER(leaky_relu);
2391
USE_TRT_CONVERTER(shuffle_channel);
2392
USE_TRT_CONVERTER(where);
2393 2394
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
2395
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2396
USE_TRT_CONVERTER(silu);
2397
USE_TRT_CONVERTER(group_norm);
2398
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2399 2400 2401
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2402
USE_TRT_CONVERTER(multihead_matmul_roformer);
2403
USE_TRT_CONVERTER(skip_layernorm);
2404
USE_TRT_CONVERTER(slice);
2405
USE_TRT_CONVERTER(scale);
2406
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2407
USE_TRT_CONVERTER(clip);
2408
USE_TRT_CONVERTER(gather);
2409
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2410
USE_TRT_CONVERTER(yolo_box);
2411
USE_TRT_CONVERTER(yolo_box_head);
2412
USE_TRT_CONVERTER(arg_max);
2413
USE_TRT_CONVERTER(arg_min);
2414
USE_TRT_CONVERTER(roi_align);
2415
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2416
USE_TRT_CONVERTER(multiclass_nms);
2417
USE_TRT_CONVERTER(multiclass_nms3);
2418
USE_TRT_CONVERTER(nearest_interp);
2419
USE_TRT_CONVERTER(nearest_interp_v2);
2420
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2421
USE_TRT_CONVERTER(reshape);
2422
USE_TRT_CONVERTER(reshape2);
2423
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2424
USE_TRT_CONVERTER(reduce_mean);
2425
USE_TRT_CONVERTER(reduce_max);
2426
USE_TRT_CONVERTER(reduce_min);
2427
USE_TRT_CONVERTER(reduce_sum);
2428
USE_TRT_CONVERTER(reduce_prod);
W
wenbin 已提交
2429
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2430 2431
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2432
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2433
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2434
USE_TRT_CONVERTER(pool3d)
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
USE_TRT_CONVERTER(square);
// unary op
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
USE_TRT_CONVERTER(sqrt);
USE_TRT_CONVERTER(reciprocal);
USE_TRT_CONVERTER(abs);
USE_TRT_CONVERTER(sin);
USE_TRT_CONVERTER(cos);
USE_TRT_CONVERTER(tan);
USE_TRT_CONVERTER(sinh);
USE_TRT_CONVERTER(cosh);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(asin);
USE_TRT_CONVERTER(acos);
USE_TRT_CONVERTER(atan);
USE_TRT_CONVERTER(asinh);
USE_TRT_CONVERTER(acosh);
USE_TRT_CONVERTER(atanh);
USE_TRT_CONVERTER(ceil);
USE_TRT_CONVERTER(floor);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(round);
USE_TRT_CONVERTER(sign);
#endif
USE_TRT_CONVERTER(rsqrt);
2461
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2462
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
2463
USE_TRT_CONVERTER(preln_skip_layernorm)
2464 2465
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2466
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2467
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2468 2469
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2470
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2471
USE_TRT_CONVERTER(cast)
2472 2473
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2474
USE_TRT_CONVERTER(equal);
S
Sanbu 已提交
2475
USE_TRT_CONVERTER(not_equal);
2476 2477
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2478
USE_TRT_CONVERTER(range)
2479 2480
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2481 2482
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2483
USE_TRT_CONVERTER(fill_constant)
2484
USE_TRT_CONVERTER(fused_token_prune)
2485
USE_TRT_CONVERTER(celu)
W
wenbin 已提交
2486
USE_TRT_CONVERTER(layernorm_shift_partition)
W
Wang Bojun 已提交
2487
USE_TRT_CONVERTER(reverse_roll)
W
wenbin 已提交
2488
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2489
USE_TRT_CONVERTER(merge_layernorm)
W
wenbin 已提交
2490
USE_TRT_CONVERTER(skip_merge_layernorm)
W
weishengying 已提交
2491 2492
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2493 2494
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
2495
USE_TRT_CONVERTER(lookup_table)
2496
USE_TRT_CONVERTER(expand_v2)
2497
USE_TRT_CONVERTER(take_along_axis)
W
wenbin 已提交
2498 2499
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
2500 2501 2502 2503
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
#endif
2504 2505 2506 2507
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2508
#endif
W
Wilber 已提交
2509 2510 2511 2512 2513 2514

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2525 2526 2527 2528
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2529 2530 2531 2532 2533 2534 2535 2536 2537
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2538 2539 2540 2541
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2542 2543 2544 2545 2546
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2547

2548 2549 2550 2551
std::map<std::string, std::vector<int64_t>> Predictor::GetInputTensorShape() {
  return predictor_->GetInputTensorShape();
}

2552 2553 2554
std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2555 2556

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2557
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2558 2559 2560 2561 2562 2563 2564
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2565
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2566 2567
}

2568 2569 2570 2571 2572 2573 2574 2575
std::map<std::string, std::vector<int64_t>> Predictor::GetOutputTensorShape() {
  return predictor_->GetOutputTensorShape();
}

std::map<std::string, DataType> Predictor::GetOutputTypes() {
  return predictor_->GetOutputTypes();
}

W
Wilber 已提交
2576 2577
bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2578 2579
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2580 2581 2582 2583 2584 2585 2586 2587
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2588 2589
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2590 2591 2592 2593
void Predictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  predictor_->RegisterOutputHook(hookfunc);
}

2594 2595
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2630 2631 2632 2633
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2634 2635 2636 2637 2638
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
2639
                             paddle_infer::PlaceType backend,
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2665 2666
      size,
      1UL,
W
Wilber 已提交
2667 2668 2669 2670 2671 2672 2673 2674
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
2675
      preds_.emplace_back(new Predictor(config_tmp));
W
Wilber 已提交
2676
    } else {
2677
      preds_.emplace_back(main_pred_->Clone());
W
Wilber 已提交
2678 2679 2680 2681 2682 2683
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2684 2685
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2686
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2687 2688
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2689 2690 2691 2692 2693 2694 2695
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2716

2717 2718 2719 2720 2721 2722
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2723

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2738 2739 2740 2741 2742
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2743
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2753
}  // namespace experimental
W
Wilber 已提交
2754
}  // namespace paddle_infer