未验证 提交 44973c65 编写于 作者: R Ryan 提交者: GitHub

[Paddle Inference] Add add arg_min trt converter (#49113)

上级 320e7651
......@@ -2334,6 +2334,7 @@ USE_TRT_CONVERTER(anchor_generator);
USE_TRT_CONVERTER(yolo_box);
USE_TRT_CONVERTER(yolo_box_head);
USE_TRT_CONVERTER(arg_max);
USE_TRT_CONVERTER(arg_min);
USE_TRT_CONVERTER(roi_align);
USE_TRT_CONVERTER(affine_channel);
USE_TRT_CONVERTER(multiclass_nms);
......
......@@ -47,6 +47,7 @@ list(
yolo_box_op.cc
yolo_box_head_op.cc
arg_max_op.cc
arg_min_op.cc
roi_align_op.cc
affine_channel_op.cc
multiclass_nms_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
class ArgMinOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a fluid arg_min op to tensorrt topk layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
auto input_dims = input->getDimensions();
int rank = input_dims.nbDims;
int axis = op_desc.HasAttr("axis")
? PADDLE_GET_CONST(int64_t, op_desc.GetAttr("axis"))
: -1;
if (axis > 0 && !engine_->with_dynamic_shape()) {
axis -= 1;
}
if (axis < 0) axis += rank;
auto* topk_layer = TRT_ENGINE_ADD_LAYER(
engine_, TopK, *input, nvinfer1::TopKOperation::kMIN, 1, 1 << axis);
auto output_name = op_desc.Output("Out")[0];
bool keepdims = PADDLE_GET_CONST(bool, op_desc.GetAttr("keepdims"));
if (keepdims) {
RreplenishLayerAndOutput(topk_layer,
"arg_min",
{output_name + "_value", output_name},
test_mode);
} else {
auto squeeze_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *topk_layer->getOutput(1));
auto dims = input_dims;
dims.nbDims -= 1;
for (int i = axis; i < dims.nbDims; i++) {
dims.d[i] = dims.d[i + 1];
}
squeeze_layer->setReshapeDimensions(dims);
RreplenishLayerAndOutput(
squeeze_layer, "arg_min", {output_name}, test_mode);
}
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(arg_min, ArgMinOpConverter);
......@@ -703,6 +703,21 @@ struct SimpleOpTypeSetTeller : public Teller {
if (axis == 0 || flatten || dtype != 2) return false;
}
if (op_type == "arg_min") {
if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
"Variable type in arg_min.";
return false;
}
int axis = desc.HasAttr("axis")
? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
: -1;
bool flatten = PADDLE_GET_CONST(bool, desc.GetAttr("flatten"));
int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
if (axis == 0 || flatten || dtype != 2) return false;
}
if (op_type == "affine_channel") {
if (!desc.HasAttr("data_layout")) return false;
auto data_layout = phi::StringToDataLayout(
......@@ -2524,6 +2539,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"yolo_box",
"yolo_box_head",
"arg_max",
"arg_min",
"roi_align",
"affine_channel",
"nearest_interp",
......@@ -2669,6 +2685,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"yolo_box",
"yolo_box_head",
"arg_max",
"arg_min",
"roi_align",
"affine_channel",
"nearest_interp",
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List, Tuple
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertArgMinTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
input_shape = program_config.inputs["arg_min_input"].shape
axis = program_config.ops[0].attrs["axis"]
if axis < 0:
axis += len(input_shape)
if len(input_shape) <= axis or axis == 0:
return False
return True
def sample_program_configs(self):
def generate_input(rank, batch):
dims = [batch]
for i in range(rank - 1):
dims.append((i + 1) * 8)
size = np.prod(dims)
return (np.arange(size) % 10 - 5).astype("float32").reshape(dims)
for rank in [3, 4]:
for batch in [1, 4]:
for axis in [-1, 0, 1, 2, 3]:
for keepdims in [True, False]:
self.rank = rank
flatten = False
dtype = 2
ops_config = [
{
"op_type": "arg_min",
"op_inputs": {"X": ["arg_min_input"]},
"op_outputs": {"Out": ["arg_min_out"]},
"op_attrs": {
"axis": axis,
"keepdims": keepdims,
"flatten": flatten,
"dtype": dtype,
},
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"arg_min_input": TensorConfig(
data_gen=partial(
generate_input, rank, batch
)
)
},
outputs=["arg_min_out"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> Tuple[paddle_infer.Config, List[int], float]:
def generate_dynamic_shape(attrs):
if self.rank == 3:
self.dynamic_shape.min_input_shape = {
"arg_min_input": [1, 8, 16]
}
self.dynamic_shape.max_input_shape = {
"arg_min_input": [4, 8, 16]
}
self.dynamic_shape.opt_input_shape = {
"arg_min_input": [3, 8, 16]
}
else:
self.dynamic_shape.min_input_shape = {
"arg_min_input": [1, 8, 16, 24]
}
self.dynamic_shape.max_input_shape = {
"arg_min_input": [4, 8, 16, 24]
}
self.dynamic_shape.opt_input_shape = {
"arg_min_input": [1, 8, 16, 24]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
self.trt_param.workspace_size = 1024000
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-3
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-3
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册