未验证 提交 39ec80de 编写于 作者: Q qingqing01 提交者: GitHub

Remove the memory copy of feeding data in C++ inference API (#14577)

* Remove the memory copy for feeding data in C++ inference API
* Fix compling dependence
* Fix compling in ONLY_CPU mode
上级 cf5be6ab
......@@ -30,7 +30,9 @@ cc_library(paddle_pass_builder SRCS paddle_pass_builder.cc)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder ir_pass_manager)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS scope lod_tensor enforce)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder DEPS zero_copy_tensor)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS
lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config
analysis_config paddle_pass_builder zero_copy_tensor reset_tensor_array)
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
......@@ -31,6 +31,7 @@
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#endif
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -214,17 +215,29 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::DDim ddim = framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<int64_t>(ddim, place_);
} else if (inputs[i].dtype == PaddleDType::FLOAT32) {
input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<float>(ddim, place_);
} else {
LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
return false;
}
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
} else {
#ifdef PADDLE_WITH_CUDA
auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(),
0); // stream 0 for sync copy
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
}
// TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
framework::LoD lod;
for (auto &level : inputs[i].lod) {
......
......@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -193,17 +194,30 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::DDim ddim = framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<int64_t>(ddim, place_);
} else if (inputs[i].dtype == PaddleDType::FLOAT32) {
input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<float>(ddim, place_);
} else {
LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
return false;
}
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
} else {
#ifdef PADDLE_WITH_CUDA
auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(),
0); // stream 0 for sync copy
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
}
// TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
framework::LoD lod;
for (auto &level : inputs[i].lod) {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册