未验证 提交 aee2db01 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference] Support range trt converter and add scalar interface. (#48697)

* add_range

* add_range
上级 7507956b
......@@ -2329,6 +2329,7 @@ USE_TRT_CONVERTER(remove_padding)
USE_TRT_CONVERTER(equal);
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(range)
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
USE_TRT_CONVERTER(sum)
......
......@@ -71,6 +71,7 @@ list(
preln_residual_bias.cc
c_allreduce_op.cc
top_k_op.cc
range_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
rnn_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class RangeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a range op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
nvinfer1::ITensor* quotient_tensor;
// Declare inputs
auto* start = engine_->GetITensor(op_desc.Input("Start")[0]);
auto* end = engine_->GetITensor(op_desc.Input("End")[0]);
auto* step = engine_->GetITensor(op_desc.Input("Step")[0]);
auto output_name = op_desc.Output("Out")[0];
auto zero_tensor = Add1DConstantLayer(0, output_name + "_zero_tensor_");
auto fquotient_tensor = FloorDiv(Sub(start, end), step);
if (start->getType() == nvinfer1::DataType::kFLOAT) {
auto* cast_int32_layer =
TRT_ENGINE_ADD_LAYER(engine_, Identity, *fquotient_tensor);
cast_int32_layer->setOutputType(0, nvinfer1::DataType::kINT32);
cast_int32_layer->getOutput(0)->setType(nvinfer1::DataType::kINT32);
quotient_tensor = cast_int32_layer->getOutput(0);
} else {
quotient_tensor = fquotient_tensor;
}
auto number_tensor = Max(Sub(zero_tensor, quotient_tensor), zero_tensor);
auto* start1 = engine_->GetITensor(op_desc.Input("Start")[0], true);
layer = TRT_ENGINE_ADD_LAYER(
engine_, Fill, nvinfer1::Dims{}, nvinfer1::FillOperation::kLINSPACE);
layer->setInput(0, *number_tensor);
layer->setInput(1, *start1);
layer->setInput(2, *step);
RreplenishLayerAndOutput(layer, "range", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(range, RangeOpConverter);
......@@ -451,7 +451,11 @@ void TensorRTEngine::SetITensor(const std::string &name,
itensor_map_[name] = tensor;
}
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name,
bool scalar) {
if (scalar) {
return ConvertWeight2ITensor(name, true);
}
if (itensor_map_.count(name)) {
return itensor_map_[name];
} else {
......@@ -463,7 +467,7 @@ nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
const std::string &name) {
const std::string &name, bool scalar) {
auto *var_v = scope_->FindVar(name);
PADDLE_ENFORCE_NOT_NULL(
var_v,
......@@ -489,9 +493,15 @@ nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
trt_in_shape.d[i] = trt_in_shape.d[i + 1];
}
}
if (scalar) {
trt_in_shape.nbDims = 0;
trt_in_shape.d[0] = var_dims[0];
}
nvinfer1::ILayer *layer =
TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
this->SetITensor(name, layer->getOutput(0));
if (!scalar) {
this->SetITensor(name, layer->getOutput(0));
}
return layer->getOutput(0);
}
......
......@@ -295,8 +295,9 @@ class TensorRTEngine {
void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
// Get an ITensor called name.
nvinfer1::ITensor* GetITensor(const std::string& name);
nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name);
nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
bool scalar = false);
std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
......
......@@ -337,6 +337,12 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if (op_type == "range") {
if (!with_dynamic_shape) {
return false;
}
}
if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
if (!with_dynamic_shape) {
......@@ -2369,6 +2375,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"matmul",
"matmul_v2",
"bmm",
"range",
"conv2d",
"conv2d_fusion",
"pool2d",
......@@ -2507,6 +2514,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"matmul",
"matmul_v2",
"bmm",
"range",
"conv2d",
"conv2d_fusion",
"pool2d",
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertRangeDynamicTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input():
return np.array([1]).astype(np.int32)
for in_dtype in [2]:
self.in_dtype = in_dtype
dics = [{}]
ops_config = [
{
"op_type": "fill_constant",
"op_inputs": {},
"op_outputs": {"Out": ["start_data"]},
"op_attrs": {
"dtype": self.in_dtype,
"str_value": "7",
"shape": [1],
},
},
{
"op_type": "fill_constant",
"op_inputs": {},
"op_outputs": {"Out": ["end_data"]},
"op_attrs": {
"dtype": self.in_dtype,
"str_value": "256",
"shape": [1],
},
},
{
"op_type": "fill_constant",
"op_inputs": {},
"op_outputs": {"Out": ["step_data"]},
"op_attrs": {
"dtype": self.in_dtype,
"str_value": "1",
"shape": [1],
},
},
{
"op_type": "range",
"op_inputs": {
"Start": ["start_data"],
"End": ["end_data"],
"Step": ["step_data"],
},
"op_outputs": {"Out": ["range_output_data1"]},
"op_attrs": dics[0],
},
{
"op_type": "cast",
"op_inputs": {"X": ["range_output_data1"]},
"op_outputs": {"Out": ["range_output_data"]},
"op_attrs": {"in_dtype": self.in_dtype, "out_dtype": 5},
},
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"step_data": TensorConfig(data_gen=partial(generate_input)),
},
outputs=["range_output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"start_data": [1],
"end_data": [1],
"step_data": [1],
}
self.dynamic_shape.max_input_shape = {
"start_data": [1],
"end_data": [1],
"step_data": [1],
}
self.dynamic_shape.opt_input_shape = {
"start_data": [1],
"end_data": [1],
"step_data": [1],
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-2
def test(self):
self.run_test()
class TrtConvertRangeStaticTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input():
return np.array([0]).astype(np.int32)
def generate_input1():
return np.array([128]).astype(np.int32)
def generate_input2():
return np.array([1]).astype(np.int32)
for in_dtype in [2, 5]:
self.in_dtype = in_dtype
dics = [{}]
ops_config = [
{
"op_type": "range",
"op_inputs": {
"Start": ["start_data"],
"End": ["end_data"],
"Step": ["step_data"],
},
"op_outputs": {"Out": ["range_output_data1"]},
"op_attrs": dics[0],
},
{
"op_type": "cast",
"op_inputs": {"X": ["range_output_data1"]},
"op_outputs": {"Out": ["range_output_data"]},
"op_attrs": {"in_dtype": self.in_dtype, "out_dtype": 5},
},
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"start_data": TensorConfig(
data_gen=partial(generate_input)
),
"end_data": TensorConfig(data_gen=partial(generate_input1)),
"step_data": TensorConfig(
data_gen=partial(generate_input2)
),
},
outputs=["range_output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 0, 6
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-2
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册