Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
aee2db01
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aee2db01
编写于
12月 05, 2022
作者:
X
xiaoxiaohehe001
提交者:
GitHub
12月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference] Support range trt converter and add scalar interface. (#48697)
* add_range * add_range
上级
7507956b
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
321 addition
and
5 deletion
+321
-5
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/range_op.cc
paddle/fluid/inference/tensorrt/convert/range_op.cc
+65
-0
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+13
-3
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+3
-2
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+8
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_range.py
...id/tests/unittests/ir/inference/test_trt_convert_range.py
+230
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
aee2db01
...
...
@@ -2329,6 +2329,7 @@ USE_TRT_CONVERTER(remove_padding)
USE_TRT_CONVERTER
(
equal
);
USE_TRT_CONVERTER
(
top_k
)
USE_TRT_CONVERTER
(
top_k_v2
)
USE_TRT_CONVERTER
(
range
)
USE_TRT_CONVERTER
(
squeeze2
)
USE_TRT_CONVERTER
(
unsqueeze2
)
USE_TRT_CONVERTER
(
sum
)
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
aee2db01
...
...
@@ -71,6 +71,7 @@ list(
preln_residual_bias.cc
c_allreduce_op.cc
top_k_op.cc
range_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
rnn_op.cc
...
...
paddle/fluid/inference/tensorrt/convert/range_op.cc
0 → 100644
浏览文件 @
aee2db01
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
RangeOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a range op to tensorrt layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
nvinfer1
::
ITensor
*
quotient_tensor
;
// Declare inputs
auto
*
start
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Start"
)[
0
]);
auto
*
end
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"End"
)[
0
]);
auto
*
step
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Step"
)[
0
]);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
auto
zero_tensor
=
Add1DConstantLayer
(
0
,
output_name
+
"_zero_tensor_"
);
auto
fquotient_tensor
=
FloorDiv
(
Sub
(
start
,
end
),
step
);
if
(
start
->
getType
()
==
nvinfer1
::
DataType
::
kFLOAT
)
{
auto
*
cast_int32_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Identity
,
*
fquotient_tensor
);
cast_int32_layer
->
setOutputType
(
0
,
nvinfer1
::
DataType
::
kINT32
);
cast_int32_layer
->
getOutput
(
0
)
->
setType
(
nvinfer1
::
DataType
::
kINT32
);
quotient_tensor
=
cast_int32_layer
->
getOutput
(
0
);
}
else
{
quotient_tensor
=
fquotient_tensor
;
}
auto
number_tensor
=
Max
(
Sub
(
zero_tensor
,
quotient_tensor
),
zero_tensor
);
auto
*
start1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Start"
)[
0
],
true
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Fill
,
nvinfer1
::
Dims
{},
nvinfer1
::
FillOperation
::
kLINSPACE
);
layer
->
setInput
(
0
,
*
number_tensor
);
layer
->
setInput
(
1
,
*
start1
);
layer
->
setInput
(
2
,
*
step
);
RreplenishLayerAndOutput
(
layer
,
"range"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
range
,
RangeOpConverter
);
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
aee2db01
...
...
@@ -451,7 +451,11 @@ void TensorRTEngine::SetITensor(const std::string &name,
itensor_map_
[
name
]
=
tensor
;
}
nvinfer1
::
ITensor
*
TensorRTEngine
::
GetITensor
(
const
std
::
string
&
name
)
{
nvinfer1
::
ITensor
*
TensorRTEngine
::
GetITensor
(
const
std
::
string
&
name
,
bool
scalar
)
{
if
(
scalar
)
{
return
ConvertWeight2ITensor
(
name
,
true
);
}
if
(
itensor_map_
.
count
(
name
))
{
return
itensor_map_
[
name
];
}
else
{
...
...
@@ -463,7 +467,7 @@ nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1
::
ITensor
*
TensorRTEngine
::
ConvertWeight2ITensor
(
const
std
::
string
&
name
)
{
const
std
::
string
&
name
,
bool
scalar
)
{
auto
*
var_v
=
scope_
->
FindVar
(
name
);
PADDLE_ENFORCE_NOT_NULL
(
var_v
,
...
...
@@ -489,9 +493,15 @@ nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
trt_in_shape
.
d
[
i
]
=
trt_in_shape
.
d
[
i
+
1
];
}
}
if
(
scalar
)
{
trt_in_shape
.
nbDims
=
0
;
trt_in_shape
.
d
[
0
]
=
var_dims
[
0
];
}
nvinfer1
::
ILayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
this
,
Constant
,
trt_in_shape
,
weight
.
get
());
this
->
SetITensor
(
name
,
layer
->
getOutput
(
0
));
if
(
!
scalar
)
{
this
->
SetITensor
(
name
,
layer
->
getOutput
(
0
));
}
return
layer
->
getOutput
(
0
);
}
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
aee2db01
...
...
@@ -295,8 +295,9 @@ class TensorRTEngine {
void
DeleteITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
);
void
SetITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
);
// Get an ITensor called name.
nvinfer1
::
ITensor
*
GetITensor
(
const
std
::
string
&
name
);
nvinfer1
::
ITensor
*
ConvertWeight2ITensor
(
const
std
::
string
&
name
);
nvinfer1
::
ITensor
*
GetITensor
(
const
std
::
string
&
name
,
bool
scalar
=
false
);
nvinfer1
::
ITensor
*
ConvertWeight2ITensor
(
const
std
::
string
&
name
,
bool
scalar
=
false
);
std
::
unordered_map
<
std
::
string
,
nvinfer1
::
ITensor
*>*
GetITensorMap
();
nvinfer1
::
ICudaEngine
*
engine
()
{
return
infer_engine_
.
get
();
}
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
aee2db01
...
...
@@ -337,6 +337,12 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"range"
)
{
if
(
!
with_dynamic_shape
)
{
return
false
;
}
}
if
(
op_type
==
"sign"
)
{
#if IS_TRT_VERSION_GE(8200)
if
(
!
with_dynamic_shape
)
{
...
...
@@ -2369,6 +2375,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"matmul"
,
"matmul_v2"
,
"bmm"
,
"range"
,
"conv2d"
,
"conv2d_fusion"
,
"pool2d"
,
...
...
@@ -2507,6 +2514,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"matmul"
,
"matmul_v2"
,
"bmm"
,
"range"
,
"conv2d"
,
"conv2d_fusion"
,
"pool2d"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_range.py
0 → 100644
浏览文件 @
aee2db01
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertRangeDynamicTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
():
return
np
.
array
([
1
]).
astype
(
np
.
int32
)
for
in_dtype
in
[
2
]:
self
.
in_dtype
=
in_dtype
dics
=
[{}]
ops_config
=
[
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"start_data"
]},
"op_attrs"
:
{
"dtype"
:
self
.
in_dtype
,
"str_value"
:
"7"
,
"shape"
:
[
1
],
},
},
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"end_data"
]},
"op_attrs"
:
{
"dtype"
:
self
.
in_dtype
,
"str_value"
:
"256"
,
"shape"
:
[
1
],
},
},
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"step_data"
]},
"op_attrs"
:
{
"dtype"
:
self
.
in_dtype
,
"str_value"
:
"1"
,
"shape"
:
[
1
],
},
},
{
"op_type"
:
"range"
,
"op_inputs"
:
{
"Start"
:
[
"start_data"
],
"End"
:
[
"end_data"
],
"Step"
:
[
"step_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"range_output_data1"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"range_output_data1"
]},
"op_outputs"
:
{
"Out"
:
[
"range_output_data"
]},
"op_attrs"
:
{
"in_dtype"
:
self
.
in_dtype
,
"out_dtype"
:
5
},
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"step_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
)),
},
outputs
=
[
"range_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"start_data"
:
[
1
],
"end_data"
:
[
1
],
"step_data"
:
[
1
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"start_data"
:
[
1
],
"end_data"
:
[
1
],
"step_data"
:
[
1
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"start_data"
:
[
1
],
"end_data"
:
[
1
],
"step_data"
:
[
1
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-2
def
test
(
self
):
self
.
run_test
()
class
TrtConvertRangeStaticTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
():
return
np
.
array
([
0
]).
astype
(
np
.
int32
)
def
generate_input1
():
return
np
.
array
([
128
]).
astype
(
np
.
int32
)
def
generate_input2
():
return
np
.
array
([
1
]).
astype
(
np
.
int32
)
for
in_dtype
in
[
2
,
5
]:
self
.
in_dtype
=
in_dtype
dics
=
[{}]
ops_config
=
[
{
"op_type"
:
"range"
,
"op_inputs"
:
{
"Start"
:
[
"start_data"
],
"End"
:
[
"end_data"
],
"Step"
:
[
"step_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"range_output_data1"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"range_output_data1"
]},
"op_outputs"
:
{
"Out"
:
[
"range_output_data"
]},
"op_attrs"
:
{
"in_dtype"
:
self
.
in_dtype
,
"out_dtype"
:
5
},
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"start_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
)
),
"end_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
)),
"step_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input2
)
),
},
outputs
=
[
"range_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
0
,
6
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-2
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录