analysis_predictor.cc 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/ir/pass.h"
28
#include "paddle/fluid/framework/naive_executor.h"
29
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/var_type_traits.h"
31
#include "paddle/fluid/framework/version.h"
32
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
34
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/memory/memcpy.h"
38
#include "paddle/fluid/platform/cpu_helper.h"
39
#include "paddle/fluid/platform/device_context.h"
40
#include "paddle/fluid/platform/gpu_info.h"
41
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
42 43
#include "paddle/fluid/platform/profiler.h"

44 45 46 47
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

48 49 50 51
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
52 53
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
54
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
55 56
#endif

57 58
namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
  } else {
#ifdef PADDLE_WITH_CUDA
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
111
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
129
bool AnalysisPredictor::Init(
130 131
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
132
  VLOG(3) << "Predictor::init()";
133 134
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
135 136
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
137
    platform::EnableProfiler(tracking_device);
138 139 140
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
141 142
  }

143
  // no matter with or without MKLDNN
L
luotao1 已提交
144
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
145

146 147 148 149 150 151 152 153 154 155 156 157 158
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
159
  }
160 161 162 163 164 165 166 167 168

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
169
  if (parent_scope) {
170 171
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
172 173
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
174
    scope_ = parent_scope;
175
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
176
  } else {
177
    paddle::framework::InitDevices(false);
Y
Yan Chunwei 已提交
178
    scope_.reset(new paddle::framework::Scope());
179
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
180
  }
181 182 183 184 185
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
186 187
  if (!program) {
    if (!LoadProgramDesc()) return false;
188 189 190 191 192 193 194
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
195 196
    if (!CheckOperatorCompatible()) {
      LOG(WARNING) << "WARNING: Results may be DIFF! "
197 198
                      "Please use the corresponding version of the model and "
                      "prediction library, and do not use the develop branch.";
199
    }
200 201
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

202 203 204 205
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
206
  } else {
207 208
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
209 210
    inference_program_ = program;
  }
M
Michal Gallus 已提交
211

212 213 214 215 216
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
217
  if (config_.use_gpu()) {
218
    status_use_gpu_ = true;
219 220 221 222 223 224 225 226 227 228
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
#ifdef PADDLE_WITH_CUDA
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
229 230 231 232 233 234 235 236
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
237
                     config_.use_feed_fetch_ops_);
238

239 240 241
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
242

243 244 245
  return true;
}

246 247 248
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::Run get_cur_mkldnn_session_id="
249
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
250 251 252
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
253 254 255 256
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
257 258 259 260 261 262 263 264 265
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
    for (size_t i = 0; i < inputs.size(); ++i) {
      for (size_t j = 0; j < inputs[i].shape.size(); ++j) {
        ss << inputs[i].shape[j] << "-";
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
266
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
267 268 269 270 271 272 273 274
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
275 276 277 278 279 280 281 282
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
283 284 285 286
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
287 288 289 290
  }
#endif
}

291 292 293
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
294
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
295 296 297
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
298
  VLOG(3) << "Predictor::predict";
299 300 301 302
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
303 304
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
305 306
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
307
    return false;
308
  }
M
Michal Gallus 已提交
309

310 311 312
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
313

314 315 316 317
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
318
  }
Y
Yan Chunwei 已提交
319

M
minqiyang 已提交
320
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
321

Y
Yan Chunwei 已提交
322 323 324 325 326
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
327 328 329
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
330
  tensor_array_batch_cleaner_.ResetNoTensorVars();
331 332 333 334

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
335 336
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
337
#endif
338
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
339 340 341 342
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
343
#endif
344 345
  return true;
}
346

347 348
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
349
  VLOG(3) << "Predictor::set_feed";
350 351 352 353 354 355 356 357 358 359
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
360 361
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
362 363 364
      return false;
    }
    int idx = -1;
365
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
366 367
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
368 369
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
370 371
      }
      idx = feed_names_[name];
372
    } else {
373
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
374
    }
375
    framework::SetFeedVariable(scope, *input, "feed", idx);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
402
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
403 404
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
405
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
406 407 408 409 410
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
411
    framework::FetchType &fetch_var =
412
        framework::GetFetchVariable(*scope, "fetch", idx);
413
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
414 415
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
416
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
417
    if (type == framework::proto::VarType::FP32) {
418 419
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
420
    } else if (type == framework::proto::VarType::INT64) {
421 422
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
423 424 425
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
426
    } else {
427
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
428 429
    }
  }
Y
Yan Chunwei 已提交
430 431
  return true;
}
432

433
void AnalysisPredictor::PrepareArgument() {
434
  argument_.SetUseGPU(config_.use_gpu());
435
  argument_.SetUseFcPadding(config_.use_fc_padding());
436
  argument_.SetGPUDeviceId(config_.gpu_device_id());
437
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
438
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
439
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
440
  // Analyze inference_program
441
  argument_.SetPredictorID(predictor_id_);
442
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
443 444
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
445
  } else {
446 447 448 449 450 451
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
452
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
453

454 455
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
456
  }
457

458
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
459
    LOG(INFO) << "TensorRT subgraph engine is enabled";
460 461 462
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
463
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
464
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
465
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
466
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
467 468 469
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
470
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
471
  }
472

石晓伟 已提交
473
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
474 475
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
476 477 478
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
479 480 481
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
石晓伟 已提交
482 483 484
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

485
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
486
    LOG(INFO) << "MKLDNN is enabled";
487 488 489
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

490 491 492 493 494 495 496 497 498 499
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

500
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
501 502 503 504
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
505
  argument_.SetDisableLogs(config_.glog_info_disabled());
506
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
507
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
508
  argument_.SetScopeNotOwned(scope_.get());
509 510 511 512 513
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
514 515
  Analyzer().Run(&argument_);

516 517 518
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
519 520
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
521
  inference_program_.reset(
522
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
523 524 525 526
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
527
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
528
}
529 530

template <>
531 532
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
533 534
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
535 536 537 538
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
539
  VLOG(3) << "create AnalysisConfig";
540 541 542 543
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
544

545
  if (config.use_gpu()) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
570

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        gflags.push_back("--allocator_strategy=naive_best_fit");
        process_level_allocator_enabled = true;
      }

      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
602 603 604 605 606 607
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
608 609 610 611
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
612 613
  // Each config can only be used for one predictor.
  config.SetInValid();
614 615 616 617 618 619 620
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
621 622
    return nullptr;
  }
623

G
Gabor Buella 已提交
624
  return predictor;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

639
void AnalysisPredictor::PrepareFeedFetch() {
640 641 642
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
643
  CreateFeedFetchVar(sub_scope_);
644 645
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
646
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
647 648 649 650 651
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
652
      idx2feeds_[idx] = op->Output("Out")[0];
653
    } else if (op->Type() == "fetch") {
654
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
655 656
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
657
      }
Y
Yan Chunwei 已提交
658
      fetches_[idx] = op;
N
nhzlx 已提交
659
      idx2fetches_[idx] = op->Input("X")[0];
660 661 662 663
    }
  }
}

664
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
665 666
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
667
  auto *var = scope->Var("feed");
668
  var->GetMutable<framework::FeedList>();
669
  var = scope->Var("fetch");
670
  var->GetMutable<framework::FetchList>();
671 672
}

N
nhzlx 已提交
673 674 675 676 677 678 679 680
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

681 682 683 684 685 686
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
687 688
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
689 690 691 692 693
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
694 695 696 697 698 699 700 701
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

702 703
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
704 705 706 707 708
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
709 710 711 712
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
713 714 715
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
716
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
717 718 719
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

720 721 722 723 724
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
725 726 727 728 729
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
730 731 732 733
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
734 735 736
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
737
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
738 739
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
740 741 742 743
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
744
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
745
  executor_->Run();
Y
Yan Chunwei 已提交
746
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
747
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
748
  tensor_array_batch_cleaner_.ResetTensorArray();
749 750 751 752

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
753
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
754 755 756 757 758
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
759 760 761 762 763
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
764
  std::string filename;
765 766 767
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
768 769 770
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
771
    filename = config_.prog_file();
772
  } else {
773
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
774 775 776 777
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
778
    LOG(ERROR) << string::Sprintf(
779 780
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
781 782
    return false;
  }
783 784 785

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
786
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
787 788 789
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
790 791 792 793 794
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
795 796 797 798 799 800 801 802
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
803
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
804
  }
805 806 807 808 809 810
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
811 812
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

834
      if (!config_.params_file().empty()) {
835 836 837 838 839 840
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
841
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
842 843 844 845 846
        op->CheckAttrs();
      }
    }
  }

847
  if (!config_.params_file().empty()) {
848 849 850 851 852 853
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
854
    op->SetAttr("file_path", {config_.params_file()});
855 856 857 858
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
859
  framework::NaiveExecutor e(place_);
860 861 862 863
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

864 865
  return true;
}
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
886
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
887
bool AnalysisPredictor::SaveTrtCalibToDisk() {
888 889 890
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
891 892 893 894
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
895
          BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
896
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
897 898 899 900
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
901 902
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
903
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
904
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
905 906
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
907 908 909
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
910

N
nhzlx 已提交
911
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
912 913 914
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
915

N
nhzlx 已提交
916 917 918 919 920
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
921
      std::string calibration_table_data_path =
N
nhzlx 已提交
922 923 924 925
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
926 927 928 929 930

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
931 932 933 934
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
935
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
936 937
  return true;
}
N
nhzlx 已提交
938
#endif
N
nhzlx 已提交
939

940
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
941
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
942
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
943 944
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
945 946
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
947
#endif
948
  if (config_.with_profile_) {
949 950 951 952 953 954
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
955

956 957 958 959 960 961
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
962 963
}

964
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
965
  std::lock_guard<std::mutex> lk(clone_mutex_);
966 967 968 969 970
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

971
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
972 973 974
  return inference_program_->Proto()->SerializeAsString();
}

975 976
bool AnalysisPredictor::CheckOperatorCompatible() {
  if (!inference_program_) {
977 978 979
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Inference program version check failed because the program does not "
        "exist."));
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    return false;
  }
  bool res = true;
  op_compatible_map_.ReadFromProto(*inference_program_->OpCompatibleMap());
  const auto &version = framework::DumpVersion(framework::kCurProgramVersion);
  LOG(INFO) << "MODEL VERSION: "
            << framework::DumpVersion(inference_program_->Version());
  LOG(INFO) << "PREDICTOR VERSION: " << version;
  std::set<std::string> op_types;
  for (size_t i = 0; i < inference_program_->Size(); ++i) {
    const auto &block = inference_program_->Block(i);
    for (const auto *op : block.AllOps()) {
      op_types.insert(op->Type());
    }
  }
  for (const auto type : op_types) {
    auto compatible_type =
        op_compatible_map_.IsRequireMiniVersion(type, version);
    if (compatible_type != framework::OpCompatibleType::compatible) {
999 1000 1001 1002
      if (!framework::kCurProgramVersion) {
        LOG(WARNING) << " - Version incompatible ("
                     << static_cast<int>(compatible_type) << ") " << type;
      }
1003 1004 1005 1006 1007 1008
      res = false;
    }
  }
  return res;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1048
template <>
1049 1050
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1051
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1052 1053
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1054 1055
}

1056
}  // namespace paddle
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1079 1080
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1081
USE_TRT_CONVERTER(split);
1082 1083
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1084
USE_TRT_CONVERTER(leaky_relu);
1085 1086
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1087
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1088 1089 1090
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1091 1092
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1093
USE_TRT_CONVERTER(slice);
1094
USE_TRT_CONVERTER(scale);
1095
USE_TRT_CONVERTER(stack);
1096
#endif
W
Wilber 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

namespace paddle_infer {

void Tensor::Reshape(const std::vector<int> &shape) { tensor_->Reshape(shape); }

std::vector<int> Tensor::shape() const { return tensor_->shape(); }

void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
  return tensor_->SetLoD(x);
}

std::vector<std::vector<size_t>> Tensor::lod() const { return tensor_->lod(); }

const std::string &Tensor::name() const { return tensor_->name(); }

DataType Tensor::type() const { return tensor_->type(); }

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetInputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetOutputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer