analysis_predictor.cc 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/framework/var_type_traits.h"
29
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/memory/memcpy.h"
36
#include "paddle/fluid/platform/cpu_helper.h"
37
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

Y
Yan Chunwei 已提交
40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
42
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
43 44
#endif

T
tensor-tang 已提交
45
DECLARE_bool(profile);
46 47 48

namespace paddle {

49
using contrib::AnalysisConfig;
N
nhzlx 已提交
50
using inference::Singleton;
N
nhzlx 已提交
51
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
52
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
53 54
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
55
#endif
56

57 58 59 60 61 62 63 64 65 66 67
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST) {
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
68
bool AnalysisPredictor::Init(
69 70
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
71
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
72 73 74
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
75 76
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
77 78 79
    platform::EnableProfiler(tracking_device);
  }

80
  // no matter with or without MKLDNN
L
luotao1 已提交
81
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
82

83 84 85 86 87 88 89 90 91 92 93 94 95
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
96
  }
97 98 99 100 101 102 103 104 105

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
106
  if (parent_scope) {
107 108 109
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
110
    scope_ = parent_scope;
111
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
112 113 114
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
115
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
116
  }
117 118 119 120 121
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
122 123
  if (!program) {
    if (!LoadProgramDesc()) return false;
124 125 126 127

    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
128
    if (config_.ir_optim()) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // If the parent_scope is passed, we assert that the persistable variables
      // are already created, so just create the no persistable variables.

      // If not cloned, the parameters should be loaded
      // OptimizeInferenceProgram.
      // So in both cases, just the local variables are needed to load, not the
      // parematers.
      executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
145
  } else {
146 147
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
148 149
    inference_program_ = program;
  }
M
Michal Gallus 已提交
150

151 152 153 154 155
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
156
  if (config_.use_gpu_) {
157
    status_use_gpu_ = true;
158
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
159 160 161 162 163 164 165 166
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
167
                     config_.use_feed_fetch_ops_);
168

169
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
170

171 172 173
  return true;
}

L
luotao1 已提交
174
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
175 176 177 178 179 180 181
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

182 183 184
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
M
minqiyang 已提交
185
  VLOG(3) << "Predictor::predict";
186 187 188 189 190 191
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
192
    return false;
193
  }
M
Michal Gallus 已提交
194

195 196 197
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
198

199 200 201 202
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
203
  }
Y
Yan Chunwei 已提交
204 205 206 207 208 209

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
210
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
211

Y
Yan Chunwei 已提交
212 213 214 215 216 217 218
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
219 220
  return true;
}
221

222 223
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
224
  VLOG(3) << "Predictor::set_feed";
225 226 227 228 229 230 231 232 233 234 235 236 237 238
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
239
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
240
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
241
      input_ptr = input.mutable_data<float>(ddim, place_);
242 243 244 245 246
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

247 248 249 250 251 252
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
253 254 255 256
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
257 258 259
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
260
                   inputs[i].data.length(), dev_ctx->stream());
261 262 263 264
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
265 266 267 268 269 270 271
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
272
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
273 274
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
275 276
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
277 278
      }
      idx = feed_names_[name];
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
309
  VLOG(3) << "Predictor::get_fetch";
310 311 312 313 314 315 316 317
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
318
    output->name = fetchs_[idx]->Input("X")[0];
Y
Yu Yang 已提交
319
    if (type == framework::proto::VarType::FP32) {
320 321
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
322
    } else if (type == framework::proto::VarType::INT64) {
323 324 325 326 327 328
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
329 330
  return true;
}
331

332
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
333
void AnalysisPredictor::OptimizeInferenceProgram() {
334 335
  status_program_optimized_ = true;

336 337
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
338 339
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_.SetMemoryOptimForceUpdate(config_.memory_optim_force_update_);
T
Tao Luo 已提交
340
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
341
  // Analyze inference_program
342 343
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
N
nhzlx 已提交
344
    argument_.SetModelPath(config_.model_dir());
T
Tao Luo 已提交
345 346
  } else {
    PADDLE_ENFORCE(
347
        !config_.params_file().empty(),
T
Tao Luo 已提交
348
        "Either model_dir or (param_file, prog_file) should be set.");
349
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
350
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
351 352

    argument_.SetModelPath(dir);
353 354
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
355
  }
356

357
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
358
    LOG(INFO) << "TensorRT subgraph engine is enabled";
359 360 361
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
362
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
363
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
W
Wojciech Uss 已提交
364
  }
365

366
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
367
    LOG(INFO) << "MKLDNN is enabled";
368 369 370
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

371
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
372 373 374 375
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
376
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
377
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
378 379 380 381 382 383
  argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
384
  inference_program_.reset(
385
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
386
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
387
}
388 389

template <>
390 391
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
392
  VLOG(3) << "create AnalysisConfig";
393
  if (config.use_gpu()) {
394
    // 1. GPU memeroy
395 396 397
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
398
    std::vector<std::string> flags;
399 400 401 402 403 404 405 406 407 408 409

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
410 411
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
412
                         std::to_string(fraction_of_gpu_memory);
413
      flags.push_back(flag);
M
minqiyang 已提交
414
      VLOG(3) << "set flag: " << flag;
415 416 417 418 419
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
420
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
421 422
    return nullptr;
  }
423
  return std::move(predictor);
424 425
}

426
void AnalysisPredictor::PrepareFeedFetch() {
427 428
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

447 448 449 450 451 452 453 454
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
477
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
478
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
479
  tensor_array_batch_cleaner_.ResetTensorArray();
480 481 482 483 484
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
485
  std::string filename;
486 487 488
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
489 490 491
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
492
    filename = config_.prog_file();
493
  } else {
494
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
495 496 497 498
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
499
    LOG(ERROR) << string::Sprintf(
500 501
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
502 503
    return false;
  }
504 505 506

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
507
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
508 509 510
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
511 512
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
513 514 515 516 517 518 519 520
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
521
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
522
  }
523 524 525 526 527 528 529
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

551
      if (!config_.params_file().empty()) {
552 553 554 555 556 557
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
558
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
559 560 561 562 563
        op->CheckAttrs();
      }
    }
  }

564
  if (!config_.params_file().empty()) {
565 566 567 568 569 570
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
571
    op->SetAttr("file_path", {config_.params_file()});
572 573 574 575
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
576
  framework::NaiveExecutor e(place_);
577 578 579 580
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

581 582
  return true;
}
583

N
nhzlx 已提交
584
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
585 586 587 588 589 590 591 592
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
593
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
594 595 596 597
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
598 599
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
600
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
601
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
602
      LOG(INFO) << "Finish wait.";
N
nhzlx 已提交
603 604 605
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
606

N
nhzlx 已提交
607
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
608 609 610
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
611 612 613 614 615 616 617 618 619

      std::string calibration_table_data_path =
          inference::analysis::GetTrtCalibPath(argument_.model_path(),
                                               engine_name);

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
620 621 622 623
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
624
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
625 626
  return true;
}
N
nhzlx 已提交
627
#endif
N
nhzlx 已提交
628

629
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
630
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
631
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
632 633
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
634 635
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
636
#endif
637 638 639 640 641 642 643
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
644 645 646 647 648 649 650

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
651 652
}

653
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
654
  std::lock_guard<std::mutex> lk(clone_mutex_);
655 656 657 658 659
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
  } else if (config_.enable_memory_optim() &&
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
  } else if (config_.enable_memory_optim() &&
             config_.memory_optim_force_update_) {
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

Y
Yan Chunwei 已提交
720 721
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<contrib::AnalysisConfig>(
722
    const contrib::AnalysisConfig &config) {
Y
Yan Chunwei 已提交
723 724 725 726
  return CreatePaddlePredictor<contrib::AnalysisConfig,
                               PaddleEngineKind::kAnalysis>(config);
}

727
}  // namespace paddle
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
750
USE_TRT_CONVERTER(split);
751 752
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
753
USE_TRT_CONVERTER(leaky_relu);
754
#endif