analysis_predictor.cc 91.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
30
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
36
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/framework/var_type_traits.h"
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/inference/analysis/helper.h"
40
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
41
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
42
#include "paddle/fluid/inference/api/helper.h"
43
#include "paddle/fluid/inference/api/infer_context.h"
44
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
45
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
46
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
47
#include "paddle/fluid/inference/api/resource_manager.h"
48
#include "paddle/fluid/inference/utils/io_utils.h"
49
#include "paddle/fluid/inference/utils/model_utils.h"
50
#include "paddle/fluid/inference/utils/singleton.h"
51
#include "paddle/fluid/memory/memcpy.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
53
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
54
#include "paddle/fluid/platform/device_context.h"
55
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
56
#include "paddle/fluid/platform/profiler.h"
57
#include "paddle/phi/api/ext/op_meta_info.h"
58 59
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
60
#include "paddle/phi/common/place.h"
W
Wilber 已提交
61
#include "paddle/phi/core/enforce.h"
62 63
#include "paddle/utils/string/split.h"

64
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
65 66 67 68
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
69

70 71 72 73
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

74 75 76 77
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

82
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
83
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
84
#include "paddle/fluid/inference/tensorrt/helper.h"
85
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
86 87
#endif

88 89 90 91
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

92 93
namespace paddle {

N
nhzlx 已提交
94
using inference::Singleton;
95
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
96 97
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
98
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
99
#endif
100

101 102
int AnalysisPredictor::clone_num_ = 1;

103 104 105 106
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
107 108
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
109 110 111 112
    return true;
  }
  return false;
}
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

132
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
133
  switch (backend) {
134
    case paddle_infer::PlaceType::kGPU:
135 136
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
137
    case paddle_infer::PlaceType::kNPU:
138
      return phi::Backend::NPU;
139
    case paddle_infer::PlaceType::kXPU:
140
      return phi::Backend::XPU;
141
    case paddle_infer::PlaceType::kCPU:
142
      return phi::Backend::CPU;
143 144
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
145 146 147 148 149 150 151
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
152 153
}  // namespace

C
ccrrong 已提交
154
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
155
                             phi::DenseTensor *t,
156
                             const platform::Place &place) {
157
  framework::DDim ddim = phi::make_ddim(pt.shape);
158 159 160 161 162 163 164
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
165 166
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
167 168 169 170
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
171 172 173
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
174 175 176
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
177 178 179 180 181 182 183 184
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
185 186 187 188 189
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
        t->numel() * paddle::experimental::SizeOf(t->dtype()),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
190
  }
191 192 193

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
194 195 196 197
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
198 199
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
200 201
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
202 203 204 205
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
206
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
207 208
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
209 210
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
211
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
212
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
213
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
214
    auto dst_gpu_place = place;
C
ccrrong 已提交
215 216 217 218 219
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
220 221 222 223 224
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
225 226
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
227
    auto dst_xpu_place = place;
C
ccrrong 已提交
228 229 230 231 232
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
233 234 235 236 237 238 239
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
240 241 242 243 244 245 246 247 248 249
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
250
bool AnalysisPredictor::Init(
251 252
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
253
  VLOG(3) << "Predictor::init()";
254 255
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
256 257
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
258
    platform::EnableProfiler(tracking_device);
259
  } else {
260 261
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
262 263
  }

264
  // no matter with or without MKLDNN
L
luotao1 已提交
265
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
266

267 268 269
  if (!PrepareScope(parent_scope)) {
    return false;
  }
270 271 272

  InitPlace();

273 274 275 276 277 278 279
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

280 281 282
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

283 284 285
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
286
  }
287

288 289 290 291 292 293 294 295 296 297 298 299 300
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
301
        static_cast<phi::GPUContext *>(
302 303 304 305 306 307
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
308
  }
309
#endif
310
  inference::DisplayMemoryInfo(place_, "Init predictor");
311 312
  return true;
}
313

314
void AnalysisPredictor::InitPlace() {
315
  if (config_.use_gpu()) {
C
ccrrong 已提交
316 317
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
318 319
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
320
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
321
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
322
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
323 324
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
325 326
    }
#endif
327
  } else if (config_.use_xpu()) {
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
351 352 353 354 355 356 357 358
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
375 376 377 378 379 380 381
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
382 383 384 385 386 387 388 389 390
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
391
#endif
392 393 394
  } else {
    place_ = paddle::platform::CPUPlace();
  }
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
412
          auto *gpu_context = new InferGPUContext(place_);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
434
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
435
          gpu_context->SetBlasTensorCoreHandle(
436 437 438 439 440 441 442 443
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
538 539
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
540 541 542 543 544
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
545 546 547 548 549
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
550 551 552 553 554 555 556 557
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
558 559 560
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
580 581
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
582 583 584 585 586 587 588 589 590
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
591 592
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
593 594
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
595 596 597
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
598 599 600
  }
}

601
bool AnalysisPredictor::PrepareExecutor() {
602
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
603 604 605 606 607
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
608 609
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
610 611
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
612

613 614 615
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
616

617 618 619
  return true;
}

620
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
657 658 659 660 661 662 663
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
700 701 702 703 704 705
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
706 707 708 709 710 711 712 713 714 715 716
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
717 718 719 720 721
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
778 779
      static_cast<bool>(fin.is_open()),
      true,
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

852 853
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
854 855 856 857 858 859 860 861 862 863 864 865
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
866
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
867 868 869
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
870 871 872
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
873 874
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
875 876 877
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
878 879 880
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
881
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
882
  }
883 884 885
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

886 887 888 889 890 891
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
892 893 894 895
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
896 897 898 899 900 901 902 903
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
904 905 906
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
907 908 909 910
  }
#endif
}

911 912 913
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
914
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
915 916 917
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
918
  VLOG(3) << "Predictor::predict";
919 920 921 922
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
923 924 925
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
926 927
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
928
    return false;
929
  }
M
Michal Gallus 已提交
930

931 932 933 934 935 936 937 938 939
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

940 941 942
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
943

944 945 946 947
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
948
  }
Y
Yan Chunwei 已提交
949

M
minqiyang 已提交
950
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
951

Y
Yan Chunwei 已提交
952 953 954 955 956
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
957 958 959
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
960
  tensor_array_batch_cleaner_.ResetNoTensorVars();
961 962 963 964

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
965 966
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
967
#endif
968
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
969 970 971 972
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
973
#endif
974 975
  return true;
}
976

977 978
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
979
  VLOG(3) << "Predictor::set_feed";
980 981 982 983 984 985 986 987 988 989
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
990
    phi::DenseTensor *input = &feed_tensors_[i];
991
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
992 993 994
      return false;
    }
    int idx = -1;
995
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
996 997
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
998 999
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1000 1001
      }
      idx = feed_names_[name];
1002
    } else {
R
Ruibiao Chen 已提交
1003
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1004
    }
1005
    framework::SetFeedVariable(scope, *input, "feed", idx);
1006 1007 1008 1009 1010
  }
  return true;
}

template <typename T>
1011
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1012 1013
                                    PaddleTensor *output) {
  // set shape.
1014
  auto shape = phi::vectorize(fetch.dims());
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1032
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1033 1034
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1035
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1036
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1037 1038
        static_cast<size_t>(idx),
        i,
1039
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1040 1041
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1042
            i));
1043
    framework::FetchType &fetch_var =
1044
        framework::GetFetchVariable(*scope, "fetch", idx);
1045
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1046
    auto type = framework::TransToProtoVarType(fetch.dtype());
1047
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1048
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1049
    if (type == framework::proto::VarType::FP32) {
1050 1051
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1052
    } else if (type == framework::proto::VarType::INT64) {
1053 1054
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1055 1056 1057
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1058 1059 1060
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1061
    } else {
1062 1063
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1064 1065
    }
  }
Y
Yan Chunwei 已提交
1066 1067
  return true;
}
1068

1069
void AnalysisPredictor::PrepareArgument() {
1070
  argument_.SetUseGPU(config_.use_gpu());
1071
  argument_.SetUseFcPadding(config_.use_fc_padding());
1072
  argument_.SetGPUDeviceId(config_.gpu_device_id());
1073
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
1074
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
1075
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1076
  // Analyze inference_program
1077
  argument_.SetPredictorID(predictor_id_);
1078
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
1079 1080
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1081
  } else {
C
ccrrong 已提交
1082 1083
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1084 1085
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1086

1087 1088
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1089
  }
1090 1091
  // For JITLayer
  argument_.SetSkipLoadParams(config_.skip_load_params_);
1092

1093
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
1094
  argument_.SetTensorRtUseOSS(config_.trt_use_varseqlen_);
1095
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
1096 1097
  argument_.SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_.SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
1098 1099 1100 1101 1102
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
1103
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1104
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1105 1106 1107
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
1108
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
1109
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
1110 1111
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
1112
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
1113
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
1114
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
1115 1116 1117
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
1118
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
1119
    argument_.SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1120
  }
1121

D
denglin-github 已提交
1122 1123 1124 1125
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
D
denglin-github 已提交
1126 1127 1128 1129 1130 1131 1132 1133
    argument_.SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_.SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_.SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_.SetDlnneDisableNodesByOutputs(
        config_.dlnne_disable_nodes_by_outputs_);
    argument_.SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_.SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
    argument_.SetDlnnePrecisionMode(config_.dlnne_precision_mode_);
D
denglin-github 已提交
1134 1135
  }

石晓伟 已提交
1136
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
1137 1138
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
1139 1140 1141
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
1142 1143 1144
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
1145 1146 1147 1148 1149
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
1150
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
1151
    argument_.SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1172 1173 1174
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1175
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
1176 1177
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
1178
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
1179 1180
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
1181 1182 1183 1184 1185
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
1186 1187
  argument_.SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_.SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1188
#endif
J
jianghaicheng 已提交
1189

1190 1191 1192
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

1193
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1194
    LOG(INFO) << "MKLDNN is enabled";
1195 1196 1197
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

1198 1199 1200 1201 1202 1203 1204 1205
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1206 1207 1208 1209
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
B
baoachun 已提交
1210 1211 1212 1213 1214 1215 1216

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
    argument_.SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_.SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_.SetQuantVarScales({});
  }
1217 1218
#endif

1219
  auto passes = config_.pass_builder()->AllPasses();
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
    passes.clear();
    if (config_.tensorrt_engine_enabled()) {
      for (const auto &pass : kTrtLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    } else if (config_.use_gpu()) {
      for (const auto &pass : kGpuLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    }

    const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses();
    for (const auto &it : deleted_passes) {
      auto iterator = std::find(passes.begin(), passes.end(), it);
      if (iterator != passes.end()) {
        passes.erase(iterator);
      }
    }

    if (config_.ir_debug_) {
      auto it = std::begin(passes);
      while (it != std::end(passes)) {
        if (*it != "graph_viz_pass") {
          it = passes.insert(it + 1, "graph_viz_pass");
        } else {
          ++it;
        }
      }
    }
  }
Y
Yan Chunwei 已提交
1254 1255 1256 1257
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
1258
  argument_.SetDisableLogs(config_.glog_info_disabled());
1259
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
1260
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
1261
  argument_.SetScopeNotOwned(scope_.get());
1262

1263
  // mixed precison.
1264
  argument_.SetModelPrecision(static_cast<int>(model_precision_));
1265
  argument_.SetMixedBlackList(config_.mixed_black_list_);
1266 1267 1268 1269 1270
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1281 1282
  Analyzer().Run(&argument_);

1283
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1284 1285
      argument_.scope_valid(),
      true,
1286
      platform::errors::InvalidArgument("The argument scope should be valid."));
1287 1288
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1289
  inference_program_.reset(
1290 1291 1292 1293
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1294
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1295 1296 1297 1298
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1299
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1300
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1301
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1313 1314 1315
#endif
        delete prog;
      });
1316 1317 1318 1319
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1320
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1321
}
1322 1323

template <>
1324 1325 1326
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1327 1328
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1329 1330 1331 1332
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1333
  VLOG(3) << "create AnalysisConfig";
1334
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1335 1336
      config.is_valid(),
      true,
1337 1338
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1339

1340 1341 1342 1343
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1344
                 []() { inference::RegisterAllCustomOperator(); });
1345

1346
  if (config.use_gpu()) {
1347 1348 1349 1350 1351 1352
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1353 1354
          config.memory_pool_init_size_mb(),
          0.f,
1355 1356 1357
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1358 1359
          config.gpu_device_id(),
          0,
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1373

1374 1375 1376 1377 1378 1379 1380
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1381 1382 1383 1384 1385 1386 1387 1388 1389
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

W
Wilber 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
      // support set flags from enviorment.
      const platform::ExportedFlagInfoMap &env_map =
          platform::GetExportedFlagInfoMap();
      std::ostringstream os;
      os << "--tryfromenv=";
      for (auto &pair : env_map) {
        os << pair.second.name << ",";
      }
      auto tryfromenv_str = os.str();
      gflags.push_back(os.str().substr(0, tryfromenv_str.size() - 1));

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1416 1417 1418 1419 1420 1421
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1422 1423 1424 1425
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1426 1427
  // Each config can only be used for one predictor.
  config.SetInValid();
1428 1429
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1430 1431 1432 1433
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1434 1435 1436 1437 1438
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1439 1440
    return nullptr;
  }
1441

G
Gabor Buella 已提交
1442
  return predictor;
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1457
void AnalysisPredictor::PrepareFeedFetch() {
1458 1459 1460
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1461
  CreateFeedFetchVar(sub_scope_);
1462 1463
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
1464
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1465 1466 1467 1468 1469
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1470
      idx2feeds_[idx] = op->Output("Out")[0];
1471
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
1472
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1473 1474
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1475
      }
Y
Yan Chunwei 已提交
1476
      fetches_[idx] = op;
N
nhzlx 已提交
1477
      idx2fetches_[idx] = op->Input("X")[0];
1478 1479 1480 1481
    }
  }
}

1482
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1483 1484 1485
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1486
  auto *var = scope->Var("feed");
1487
  var->GetMutable<framework::FeedList>();
1488
  var = scope->Var("fetch");
1489
  var->GetMutable<framework::FetchList>();
1490 1491
}

N
nhzlx 已提交
1492 1493 1494 1495 1496 1497 1498 1499
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1500 1501 1502 1503 1504 1505
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1506 1507 1508
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1509 1510 1511 1512 1513
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1545 1546 1547 1548 1549 1550 1551 1552
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1553 1554
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1555
  framework::Scope *scope;
1556
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1557 1558 1559 1560 1561 1562 1563 1564
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1565
  PADDLE_ENFORCE_NOT_NULL(
1566
      scope->FindVar(name),
1567
      platform::errors::PreconditionNotMet(
1568
          "The variable named %s is not found in the scope of the executor.",
1569
          name));
1570 1571
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1572 1573
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1574 1575
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1576 1577 1578 1579
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1580
  } else if (platform::is_xpu_place(place_)) {
1581 1582 1583 1584 1585 1586 1587 1588
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1589
      auto xpu_place = place_;
1590 1591
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1592
  } else if (platform::is_npu_place(place_)) {
1593
    auto npu_place = place_;
W
Wilber 已提交
1594
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1595 1596 1597 1598 1599 1600
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1601
  } else {
1602
    auto gpu_place = place_;
N
nhzlx 已提交
1603 1604
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1605 1606 1607 1608 1609
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1610
  framework::Scope *scope;
1611
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1612 1613 1614 1615 1616 1617 1618 1619
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1620
  PADDLE_ENFORCE_NOT_NULL(
1621
      scope->FindVar(name),
1622
      platform::errors::PreconditionNotMet(
1623
          "The variable named %s is not found in the scope of the executor.",
1624
          name));
1625 1626
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1627 1628
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1629 1630
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1631 1632 1633 1634
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1635
  } else if (platform::is_xpu_place(place_)) {
1636 1637 1638 1639 1640 1641 1642 1643
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1644
      auto xpu_place = place_;
1645 1646
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1647
  } else if (platform::is_npu_place(place_)) {
1648
    auto npu_place = place_;
W
Wilber 已提交
1649
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1650 1651 1652 1653 1654 1655
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1656
  } else {
1657
    auto gpu_place = place_;
N
nhzlx 已提交
1658 1659
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1660 1661 1662 1663
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1664
  inference::DisplayMemoryInfo(place_, "before run");
1665
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1676 1677 1678
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1679
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1701
  executor_->Run();
1702
  inference::DisplayMemoryInfo(place_, "after run");
1703 1704 1705 1706 1707

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1708
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1709
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1710
  tensor_array_batch_cleaner_.ResetTensorArray();
1711 1712 1713 1714

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1715 1716 1717
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1718 1719 1720
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1721
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1722 1723 1724 1725 1726
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1727 1728 1729
  return true;
}

W
Wilber 已提交
1730 1731
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
1757 1758 1759 1760
  return ZeroCopyRun();
}
#endif

1761 1762 1763 1764 1765 1766
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1767
    auto gpu_place = place_;
L
Leo Chen 已提交
1768
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(gpu_place));
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
1780
    if (!var->IsType<phi::DenseTensor>()) {
1781 1782
      continue;
    }
1783 1784
    auto tensor = var->Get<phi::DenseTensor>();
    framework::DDim dim = tensor.dims();
1785 1786 1787
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
    if (tensor.dtype() == paddle::experimental::DataType::INT32 &&
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
      if (tensor.place() == platform::CPUPlace()) {
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int));
      } else if (tensor.place() == platform::CUDAPlace()) {
#if defined(PADDLE_WITH_CUDA)
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CUDAPlace(),
                             tensor.data<int>(),
                             tensor.numel() * sizeof(int),
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
1816 1817 1818 1819 1820 1821 1822
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
1878 1879
}

1880 1881
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1882
  std::string filename;
1883 1884
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1885
  } else if (!config_.prog_file().empty()) {
1886 1887 1888
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1889
    filename = config_.prog_file();
1890
  } else {
1891
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1892 1893 1894 1895
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1896
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
1897 1898
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1899
        config_.params_file());
1900 1901
    return false;
  }
1902 1903 1904

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1905
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1906 1907 1908
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1909
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1910 1911
        static_cast<bool>(fin.is_open()),
        true,
1912 1913 1914
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1915 1916 1917 1918 1919 1920 1921 1922
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1923
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1924
  }
1925 1926 1927 1928 1929 1930
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1931 1932
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1933

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1954
      if (!config_.params_file().empty()) {
1955 1956 1957 1958 1959 1960
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1961
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1962 1963 1964 1965 1966
        op->CheckAttrs();
      }
    }
  }

1967
  if (!config_.params_file().empty()) {
1968 1969 1970 1971 1972 1973
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1974
    op->SetAttr("file_path", {config_.params_file()});
1975 1976 1977 1978
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1979
  framework::NaiveExecutor e(place_);
1980 1981 1982 1983
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1984 1985
  return true;
}
1986

1987 1988 1989 1990 1991
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1992 1993 1994 1995 1996 1997 1998 1999 2000
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
2001
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2002 2003
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2004
        auto *t = variable->GetMutable<phi::DenseTensor>();
2005 2006 2007 2008 2009 2010
        t->clear();
      }
    }
  }
}

2011
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2012
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2013 2014
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2015 2016
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2017 2018 2019
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2020
      std::string engine_name = PADDLE_GET_CONST(
2021
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2022
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2023 2024 2025 2026
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2027 2028
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2029
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2030
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2031 2032
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2033 2034 2035
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2036

N
nhzlx 已提交
2037
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2038 2039 2040
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2041

N
nhzlx 已提交
2042 2043 2044 2045 2046
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
2047
      std::string calibration_table_data_path =
N
nhzlx 已提交
2048 2049 2050 2051
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2052 2053 2054 2055 2056

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2057 2058 2059 2060
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2061
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2062 2063
  return true;
}
N
nhzlx 已提交
2064
#endif
N
nhzlx 已提交
2065

2066
AnalysisPredictor::~AnalysisPredictor() {
2067
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2068
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2069 2070
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2071 2072
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2073
#endif
2074
  if (config_.with_profile_) {
2075 2076 2077 2078
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2088 2089
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2090

2091 2092 2093 2094 2095 2096
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2097

2098 2099 2100
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2101 2102 2103 2104 2105
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
2106 2107 2108
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2109
  device_contexts_.clear();
2110 2111 2112 2113 2114 2115 2116

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2117 2118
}

2119
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
2120
  std::lock_guard<std::mutex> lk(clone_mutex_);
2121
  auto *x = new AnalysisPredictor(config_);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
  x->status_is_cloned_ = true;
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2133
  x->Init(scope_, inference_program_);
2134
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2135 2136 2137
  return std::unique_ptr<PaddlePredictor>(x);
}

2138
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2139 2140 2141
  return inference_program_->Proto()->SerializeAsString();
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
2181
template <>
2182 2183
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2184
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2185 2186
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2187 2188
}

2189
}  // namespace paddle
2190

2191
#ifdef PADDLE_WITH_TENSORRT
2192
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2193 2194 2195
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2196 2197
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2198
USE_TRT_CONVERTER(elementwise_pow_weight);
2199 2200 2201 2202 2203 2204 2205
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
2206
USE_TRT_CONVERTER(transpose);
2207
USE_TRT_CONVERTER(transpose2);
2208
USE_TRT_CONVERTER(flatten);
2209
USE_TRT_CONVERTER(flatten_contiguous_range);
2210
USE_TRT_CONVERTER(matmul);
2211
USE_TRT_CONVERTER(matmul_v2);
2212
USE_TRT_CONVERTER(bmm);
2213 2214
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Z
zhupengyang 已提交
2215 2216
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
2217 2218 2219 2220 2221 2222 2223 2224 2225
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2226 2227
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2228
USE_TRT_CONVERTER(split);
2229 2230
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2231
USE_TRT_CONVERTER(leaky_relu);
2232 2233
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2234
USE_TRT_CONVERTER(silu);
2235
USE_TRT_CONVERTER(group_norm);
2236
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2237 2238 2239
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2240
USE_TRT_CONVERTER(skip_layernorm);
2241
USE_TRT_CONVERTER(slice);
2242
USE_TRT_CONVERTER(scale);
2243
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2244
USE_TRT_CONVERTER(clip);
2245
USE_TRT_CONVERTER(gather);
2246
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2247
USE_TRT_CONVERTER(yolo_box);
2248
USE_TRT_CONVERTER(yolo_box_head);
2249
USE_TRT_CONVERTER(arg_max);
2250
USE_TRT_CONVERTER(roi_align);
2251
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2252
USE_TRT_CONVERTER(multiclass_nms);
2253
USE_TRT_CONVERTER(multiclass_nms3);
2254
USE_TRT_CONVERTER(nearest_interp);
2255
USE_TRT_CONVERTER(nearest_interp_v2);
2256
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2257
USE_TRT_CONVERTER(reshape);
2258
USE_TRT_CONVERTER(reshape2);
2259 2260
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2261
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
2262
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2263 2264
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2265
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2266
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2267
USE_TRT_CONVERTER(pool3d)
2268 2269
#ifdef _WIN32
#else
2270
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2271 2272
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
#endif
2273
USE_TRT_CONVERTER(preln_skip_layernorm)
2274 2275
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2276
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2277
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2278 2279
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2280
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2281
USE_TRT_CONVERTER(cast)
2282 2283
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2284
USE_TRT_CONVERTER(equal);
2285 2286
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2287 2288
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2289 2290
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2291
USE_TRT_CONVERTER(fill_constant)
2292
USE_TRT_CONVERTER(fused_token_prune)
W
wenbin 已提交
2293
USE_TRT_CONVERTER(layernorm_shift_partition)
W
wenbin 已提交
2294
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2295
USE_TRT_CONVERTER(merge_layernorm)
W
weishengying 已提交
2296 2297
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2298
USE_TRT_CONVERTER(lookup_table)
2299
USE_TRT_CONVERTER(expand_v2)
2300 2301 2302 2303
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2304
#endif
W
Wilber 已提交
2305 2306 2307 2308 2309 2310

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2321 2322 2323 2324
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2325 2326 2327 2328 2329 2330 2331 2332 2333
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2334 2335 2336 2337
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2338 2339 2340 2341 2342
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2343 2344 2345 2346

std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2347 2348

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2349
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2350 2351 2352 2353 2354 2355 2356
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2357
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2358 2359 2360 2361
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2362 2363
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2364 2365 2366 2367 2368 2369 2370 2371
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2372 2373
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2374 2375
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2410 2411 2412 2413
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2414 2415 2416 2417 2418
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
2419
                             paddle_infer::PlaceType backend,
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2445 2446
      size,
      1UL,
W
Wilber 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2465 2466
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2467
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2468 2469
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2470 2471 2472 2473 2474 2475 2476
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2497

2498 2499 2500 2501 2502 2503
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2519 2520 2521 2522 2523
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2524
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2534
}  // namespace experimental
W
Wilber 已提交
2535
}  // namespace paddle_infer