Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
21f33b42
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
21f33b42
编写于
11月 15, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete PRelu plugin and Conv2d transpose op converter
上级
23544096
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
561 addition
and
79 deletion
+561
-79
paddle/fluid/inference/analysis/passes/ir_analysis_compose_pass.cc
...uid/inference/analysis/passes/ir_analysis_compose_pass.cc
+1
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+6
-3
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+118
-70
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+2
-1
paddle/fluid/inference/tensorrt/convert/prelu_op.cc
paddle/fluid/inference/tensorrt/convert/prelu_op.cc
+82
-0
paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
+35
-1
paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc
paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc
+94
-0
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+2
-1
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+2
-1
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu
+145
-0
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h
+71
-0
未找到文件。
paddle/fluid/inference/analysis/passes/ir_analysis_compose_pass.cc
浏览文件 @
21f33b42
...
...
@@ -45,7 +45,7 @@ void IrAnalysisComposePass::InitTensorRTAttrs(Argument *argument) {
std
::
unordered_set
<
std
::
string
>
teller_set
(
{
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"dropout"
,
"split"
});
"elementwise_add"
,
"dropout"
,
"split"
,
"prelu"
,
"conv2d_transpose"
});
if
(
!
node
->
IsOp
())
return
false
;
if
(
teller_set
.
count
(
node
->
Op
()
->
Type
()))
{
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
21f33b42
...
...
@@ -549,4 +549,6 @@ USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER
(
dropout
);
USE_TRT_CONVERTER
(
pad
);
USE_TRT_CONVERTER
(
split
);
USE_TRT_CONVERTER
(
prelu
);
USE_TRT_CONVERTER
(
conv2d_transpose
);
#endif
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
21f33b42
...
...
@@ -2,7 +2,7 @@
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc
pad_op.cc split_op.cc
prelu_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
...
...
@@ -16,7 +16,7 @@ nv_test(test_trt_fc_op SRCS test_fc_op.cc fc_op.cc
nv_test
(
test_trt_activation_op SRCS test_activation_op.cc activation_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine activation_op SERIAL
)
nv_test
(
test_trt_conv_op SRCS test_conv2d_op.cc conv2d_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine conv_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine conv_op
conv_transpose_op
SERIAL
)
nv_test
(
test_trt_pool2d_op SRCS test_pool2d_op.cc pool2d_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine pool_op SERIAL
)
nv_test
(
test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc
...
...
@@ -33,4 +33,7 @@ nv_test(test_trt_pad_op SRCS test_pad_op.cc pad_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine pad_op SERIAL
)
nv_test
(
test_trt_split_op SRCS test_split_op.cc split_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine tensorrt_plugin
split_op concat_op SERIAL
)
split_op concat_op SERIAL
)
nv_test
(
test_trt_prelu_op SRCS test_prelu_op.cc prelu_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine tensorrt_plugin
prelu_op SERIAL
)
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
21f33b42
...
...
@@ -18,92 +18,139 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
bool
to_skip_merging_optimize
(
TensorRTEngine
*
engine
_
,
bool
to_skip_merging_optimize
(
TensorRTEngine
*
engine
,
const
std
::
vector
<
int
>&
filters
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
std
::
string
input_name
)
{
if
(
engine
_
->
itensor_quote_num
[
input_name
]
>
0
)
{
if
(
engine
->
itensor_quote_num
[
input_name
]
>
0
)
{
return
true
;
}
if
(
filters
[
0
]
==
1
&&
filters
[
1
]
==
1
&&
strides
[
0
]
==
1
&&
strides
[
1
]
==
1
&&
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
engine
_
->
itensor_quote_num
[
input_name
]
+=
1
;
engine
->
itensor_quote_num
[
input_name
]
+=
1
;
return
false
;
}
template
<
typename
RegistFunc
,
typename
SetDilationFunc
>
void
ConvertConv2d
(
TensorRTEngine
*
engine
,
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
,
RegistFunc
fadd_layer
,
SetDilationFunc
fset_dilation
,
const
std
::
string
&
name
)
{
VLOG
(
3
)
<<
"convert a fluid "
<<
name
<<
" op to tensorrt layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Input"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Filter"
).
size
(),
1
);
// Y is a weight
PADDLE_ENFORCE_EQ
(
op_desc
.
Output
(
"Output"
).
size
(),
1
);
PADDLE_ENFORCE
(
engine
!=
nullptr
);
auto
*
X
=
engine
->
GetITensor
(
op_desc
.
Input
(
"Input"
).
front
());
// Declare weights
auto
*
Y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Filter"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
Y_v
);
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
platform
::
CPUPlace
cpu_place
;
std
::
unique_ptr
<
framework
::
LoDTensor
>
weight_tensor
(
new
framework
::
LoDTensor
());
weight_tensor
->
Resize
(
Y_t
->
dims
());
TensorCopySync
((
*
Y_t
),
cpu_place
,
weight_tensor
.
get
());
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE_EQ
(
weight_tensor
->
dims
().
size
(),
4UL
);
const
int
n_output
=
weight_tensor
->
dims
()[
0
];
const
int
n_input
=
weight_tensor
->
dims
()[
1
];
const
int
filter_h
=
weight_tensor
->
dims
()[
2
];
const
int
filter_w
=
weight_tensor
->
dims
()[
3
];
const
int
groups
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"groups"
));
const
std
::
vector
<
int
>
dilations
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"dilations"
));
const
std
::
vector
<
int
>
strides
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"strides"
));
const
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
nvinfer1
::
DimsHW
nv_ksize
(
filter_h
,
filter_w
);
nvinfer1
::
DimsHW
nv_dilations
(
dilations
[
0
],
dilations
[
1
]);
nvinfer1
::
DimsHW
nv_strides
(
strides
[
0
],
strides
[
1
]);
nvinfer1
::
DimsHW
nv_paddings
(
paddings
[
0
],
paddings
[
1
]);
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
weight_tensor
->
numel
())};
TensorRTEngine
::
Weight
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
auto
*
layer
=
fadd_layer
(
const_cast
<
nvinfer1
::
ITensor
*>
(
X
),
n_output
,
n_input
,
nv_ksize
,
weight
,
bias
);
PADDLE_ENFORCE
(
layer
!=
nullptr
);
layer
->
setStride
(
nv_strides
);
layer
->
setPadding
(
nv_paddings
);
layer
->
setNbGroups
(
groups
);
// set dilations
fset_dilation
(
layer
,
nv_dilations
);
auto
output_name
=
op_desc
.
Output
(
"Output"
).
front
();
layer
->
setName
((
name
+
" (Output: "
+
output_name
+
")"
).
c_str
());
engine
->
weight_map
[
op_desc
.
Input
(
"Filter"
).
front
()]
=
std
::
move
(
weight_tensor
);
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
||
to_skip_merging_optimize
(
engine
,
{
filter_h
,
filter_w
},
strides
,
paddings
,
op_desc
.
Input
(
"Input"
).
front
()))
{
engine
->
DeclareOutput
(
output_name
);
}
}
class
Conv2dOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a fluid conv2d op to tensorrt conv layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Input"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Filter"
).
size
(),
1
);
// Y is a weight
PADDLE_ENFORCE_EQ
(
op_desc
.
Output
(
"Output"
).
size
(),
1
);
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Input"
).
front
());
// Declare weights
auto
*
Y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Filter"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
Y_v
);
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
platform
::
CPUPlace
cpu_place
;
std
::
unique_ptr
<
framework
::
LoDTensor
>
weight_tensor
(
new
framework
::
LoDTensor
());
weight_tensor
->
Resize
(
Y_t
->
dims
());
TensorCopySync
((
*
Y_t
),
cpu_place
,
weight_tensor
.
get
());
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE_EQ
(
weight_tensor
->
dims
().
size
(),
4UL
);
const
int
n_output
=
weight_tensor
->
dims
()[
0
];
const
int
filter_h
=
weight_tensor
->
dims
()[
2
];
const
int
filter_w
=
weight_tensor
->
dims
()[
3
];
const
int
groups
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"groups"
));
const
std
::
vector
<
int
>
dilations
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"dilations"
));
const
std
::
vector
<
int
>
strides
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"strides"
));
const
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
nvinfer1
::
DimsHW
nv_ksize
(
filter_h
,
filter_w
);
nvinfer1
::
DimsHW
nv_dilations
(
dilations
[
0
],
dilations
[
1
]);
nvinfer1
::
DimsHW
nv_strides
(
strides
[
0
],
strides
[
1
]);
nvinfer1
::
DimsHW
nv_paddings
(
paddings
[
0
],
paddings
[
1
]);
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
weight_tensor
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Convolution
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
X
),
n_output
,
nv_ksize
,
weight
.
get
(),
bias
.
get
());
PADDLE_ENFORCE
(
layer
!=
nullptr
);
layer
->
setStride
(
nv_strides
);
layer
->
setPadding
(
nv_paddings
);
layer
->
setDilation
(
nv_dilations
);
layer
->
setNbGroups
(
groups
);
auto
output_name
=
op_desc
.
Output
(
"Output"
).
front
();
layer
->
setName
((
"conv2d (Output: "
+
output_name
+
")"
).
c_str
());
engine_
->
weight_map
[
op_desc
.
Input
(
"Filter"
).
front
()]
=
std
::
move
(
weight_tensor
);
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
||
to_skip_merging_optimize
(
engine_
,
{
filter_h
,
filter_w
},
strides
,
paddings
,
op_desc
.
Input
(
"Input"
).
front
()))
{
engine_
->
DeclareOutput
(
output_name
);
}
ConvertConv2d
(
engine_
,
op
,
scope
,
test_mode
,
[
&
](
nvinfer1
::
ITensor
*
inputs
,
int
n_output
,
/* Conv output maps */
int
n_input
,
/* Conv input maps */
nvinfer1
::
DimsHW
&
ksize
,
TensorRTEngine
::
Weight
&
weight
,
TensorRTEngine
::
Weight
&
bias
)
->
nvinfer1
::
IConvolutionLayer
*
{
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Convolution
,
*
inputs
,
n_output
,
ksize
,
weight
.
get
(),
bias
.
get
());
return
layer
;
},
[](
nvinfer1
::
IConvolutionLayer
*
layer
,
nvinfer1
::
DimsHW
&
dilations
)
{
layer
->
setDilation
(
dilations
);
},
"conv2d"
);
}
};
class
Deconv2dOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
ConvertConv2d
(
engine_
,
op
,
scope
,
test_mode
,
[
&
](
nvinfer1
::
ITensor
*
inputs
,
int
n_output
,
/* Deconv input maps */
int
n_input
,
/* Deconv output maps */
nvinfer1
::
DimsHW
&
ksize
,
TensorRTEngine
::
Weight
&
weight
,
TensorRTEngine
::
Weight
&
bias
)
->
nvinfer1
::
IDeconvolutionLayer
*
{
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Deconvolution
,
*
inputs
,
n_input
,
ksize
,
weight
.
get
(),
bias
.
get
());
return
layer
;
},
[](
nvinfer1
::
IDeconvolutionLayer
*
layer
,
nvinfer1
::
DimsHW
&
dilations
)
{
PADDLE_ENFORCE
(
dilations
.
d
[
0
]
==
1
&&
dilations
.
d
[
1
]
==
1
,
"Dilations must be (1, 1) for tensorRT, but given (%d, %d)"
,
dilations
.
d
[
0
],
dilations
.
d
[
1
]);
},
"conv2d_transpose"
);
}
};
...
...
@@ -112,3 +159,4 @@ class Conv2dOpConverter : public OpConverter {
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
conv2d
,
Conv2dOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
conv2d_transpose
,
Deconv2dOpConverter
);
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
浏览文件 @
21f33b42
...
...
@@ -34,7 +34,8 @@ class ElementwiseWeightOpConverter : public OpConverter {
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
nvinfer1
::
Dims
dims_x
=
X
->
getDimensions
();
PADDLE_ENFORCE
(
dims_x
.
nbDims
>=
3
);
PADDLE_ENFORCE
(
dims_x
.
nbDims
>=
3
,
"x dims experts 3, but %d is given."
,
dims_x
.
nbDims
);
auto
*
Y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Y"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
Y_v
);
...
...
paddle/fluid/inference/tensorrt/convert/prelu_op.cc
0 → 100644
浏览文件 @
21f33b42
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* PRelu converter from fluid to tensorRT.
*/
class
PReluOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
40
)
<<
"convert fluid prelu op to tensorrt prelu layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
int
input_num
=
op_desc
.
Input
(
"X"
).
size
();
PADDLE_ENFORCE
(
input_num
==
1
);
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
// Get output
size_t
output_num
=
op_desc
.
Output
(
"Out"
).
size
();
PADDLE_ENFORCE
(
output_num
==
1
);
// Get attrs
std
::
string
mode
=
boost
::
get
<
std
::
string
>
(
op_desc
.
GetAttr
(
"mode"
));
//
auto
*
alpha_var
=
scope
.
FindVar
(
op_desc
.
Input
(
"Alpha"
)[
0
]);
PADDLE_ENFORCE_NOT_NULL
(
alpha_var
);
auto
*
alpha_tensor
=
alpha_var
->
GetMutable
<
framework
::
LoDTensor
>
();
platform
::
CPUPlace
place
;
std
::
unique_ptr
<
framework
::
LoDTensor
>
alpha_tensor_host
(
new
framework
::
LoDTensor
());
alpha_tensor_host
->
Resize
(
alpha_tensor
->
dims
());
TensorCopySync
(
*
alpha_tensor
,
place
,
alpha_tensor_host
.
get
());
float
*
alpha_data
=
alpha_tensor_host
->
mutable_data
<
float
>
(
place
);
// Transform alpha to TensorRTEngine::Weight
TensorRTEngine
::
Weight
alpha_rt
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
alpha_data
),
alpha_tensor_host
->
numel
());
engine_
->
weight_map
[
op_desc
.
Input
(
"Alpha"
)[
0
]]
=
std
::
move
(
alpha_tensor_host
);
//
PReluPlugin
*
plugin
=
new
PReluPlugin
(
alpha_rt
,
mode
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
std
::
string
layer_name
=
"prelu (Output: "
;
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
i
];
layer
->
getOutput
(
i
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
i
));
layer_name
+=
output_name
;
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
layer
->
setName
((
layer_name
+
")"
).
c_str
());
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
prelu
,
PReluOpConverter
);
paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
浏览文件 @
21f33b42
...
...
@@ -16,6 +16,9 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_OP
(
conv2d
);
USE_OP
(
conv2d_transpose
);
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
...
...
@@ -51,7 +54,38 @@ TEST(conv2d_op, test) {
validator
.
Execute
(
3
);
}
TEST
(
conv2d_transpose_op
,
test
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
"deconv2d-Y"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
5
,
parameters
,
scope
,
1
<<
15
);
validator
.
DeclInputVar
(
"deconv2d-X"
,
nvinfer1
::
Dims3
(
3
,
5
,
5
));
validator
.
DeclParamVar
(
"deconv2d-Y"
,
nvinfer1
::
Dims4
(
3
,
2
,
3
,
3
));
validator
.
DeclOutputVar
(
"deconv2d-Out"
,
nvinfer1
::
Dims3
(
2
,
5
,
5
));
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"conv2d_transpose"
);
desc
.
SetInput
(
"Input"
,
{
"deconv2d-X"
});
desc
.
SetInput
(
"Filter"
,
{
"deconv2d-Y"
});
desc
.
SetOutput
(
"Output"
,
{
"deconv2d-Out"
});
const
std
::
vector
<
int
>
strides
({
1
,
1
});
const
std
::
vector
<
int
>
paddings
({
1
,
1
});
const
std
::
vector
<
int
>
dilations
({
1
,
1
});
const
int
groups
=
1
;
desc
.
SetAttr
(
"strides"
,
strides
);
desc
.
SetAttr
(
"paddings"
,
paddings
);
desc
.
SetAttr
(
"dilations"
,
dilations
);
desc
.
SetAttr
(
"groups"
,
groups
);
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
3
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
conv2d
);
paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc
0 → 100644
浏览文件 @
21f33b42
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
TEST
(
prelu_op
,
test_channel_wise
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
"prelu_alpha"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"prelu_input"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
validator
.
DeclParamVar
(
"prelu_alpha"
,
nvinfer1
::
Dims3
(
3
,
1
,
1
));
validator
.
DeclOutputVar
(
"prelu_out"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"prelu"
);
desc
.
SetInput
(
"X"
,
{
"prelu_input"
});
desc
.
SetInput
(
"Alpha"
,
{
"prelu_alpha"
});
desc
.
SetOutput
(
"Out"
,
{
"prelu_out"
});
desc
.
SetAttr
(
"mode"
,
std
::
string
(
"channel"
));
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
}
TEST
(
prelu_op
,
test_element_wise
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
"prelu_alpha"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"prelu_input"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
validator
.
DeclParamVar
(
"prelu_alpha"
,
nvinfer1
::
Dims4
(
10
,
3
,
2
,
2
));
validator
.
DeclOutputVar
(
"prelu_out"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"prelu"
);
desc
.
SetInput
(
"X"
,
{
"prelu_input"
});
desc
.
SetInput
(
"Alpha"
,
{
"prelu_alpha"
});
desc
.
SetOutput
(
"Out"
,
{
"prelu_out"
});
desc
.
SetAttr
(
"mode"
,
std
::
string
(
"element"
));
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
}
TEST
(
prelu_op
,
test_scalar
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
"prelu_alpha"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"prelu_input"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
validator
.
DeclParamVar
(
"prelu_alpha"
,
nvinfer1
::
Dims3
(
1
,
1
,
1
));
validator
.
DeclOutputVar
(
"prelu_out"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"prelu"
);
desc
.
SetInput
(
"X"
,
{
"prelu_input"
});
desc
.
SetInput
(
"Alpha"
,
{
"prelu_alpha"
});
desc
.
SetOutput
(
"Out"
,
{
"prelu_out"
});
desc
.
SetAttr
(
"mode"
,
std
::
string
(
"all"
));
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
// USE_OP(prelu);
USE_CPU_ONLY_OP
(
prelu
);
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
21f33b42
...
...
@@ -200,7 +200,8 @@ void TensorRTEngine::GetOutputInCPU(const std::string &name, void *dst,
Buffer
&
TensorRTEngine
::
buffer
(
const
std
::
string
&
name
)
{
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"call FreezeNetwork first."
);
auto
it
=
buffer_sizes_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
buffer_sizes_
.
end
());
PADDLE_ENFORCE
(
it
!=
buffer_sizes_
.
end
(),
"tried to access buffer named %s"
,
name
);
auto
slot_offset
=
infer_engine_
->
getBindingIndex
(
name
.
c_str
());
return
buffers_
[
slot_offset
];
}
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
21f33b42
...
...
@@ -40,12 +40,13 @@ class TensorRTEngine : public EngineBase {
// Weight is model parameter.
class
Weight
{
public:
Weight
()
=
default
;
Weight
(
nvinfer1
::
DataType
dtype
,
void
*
value
,
size_t
num_elem
)
{
w_
.
type
=
dtype
;
w_
.
values
=
value
;
w_
.
count
=
num_elem
;
}
const
nvinfer1
::
Weights
&
get
()
{
return
w_
;
}
nvinfer1
::
Weights
&
get
()
{
return
w_
;
}
std
::
vector
<
int64_t
>
dims
;
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
21f33b42
nv_library
(
tensorrt_plugin SRCS trt_plugin.cc split_op_plugin.cu DEPS enforce
)
nv_library
(
tensorrt_plugin SRCS trt_plugin.cc split_op_plugin.cu
prelu_op_plugin.cu
DEPS enforce
)
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu
0 → 100644
浏览文件 @
21f33b42
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <cassert>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
static
const
int
CUDA_NUM_THREADS
=
1024
;
static
const
int
CUDA_MAX_NUM_BLOCKS
=
65535
;
inline
static
int
GET_NUM_BLOCKS
(
const
int
N
)
{
return
(
N
+
CUDA_NUM_THREADS
-
1
)
/
CUDA_NUM_THREADS
;
}
__global__
void
PReluChannelWiseKernel
(
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
channel
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
float
*
in
=
input
+
offset
;
float
*
out
=
output
+
offset
;
float
scale
=
alpha
[
blockIdx
.
x
%
channel
];
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
float
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
*
x
;
}
}
__global__
void
PReluElementWiseKernel
(
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
float
*
in
=
input
+
offset
;
const
float
*
scale
=
alpha
+
offset
;
float
*
out
=
output
+
offset
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
float
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
[
i
]
*
x
;
}
}
__global__
void
PReluScalarKernel
(
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
float
*
in
=
input
+
offset
;
float
scale
=
*
alpha
;
float
*
out
=
output
+
offset
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
float
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
*
x
;
}
}
static
inline
void
PReluChannelWise
(
cudaStream_t
stream
,
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
batch_size
,
const
nvinfer1
::
Dims
&
dims
)
{
size_t
unroll
=
batch_size
*
dims
.
d
[
0
];
size_t
spatial_size
=
dims
.
d
[
1
]
*
dims
.
d
[
2
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluChannelWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
dims
.
d
[
0
],
spatial_size
);
}
static
inline
void
PReluElementWise
(
cudaStream_t
stream
,
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
batch_size
,
const
nvinfer1
::
Dims
&
dims
)
{
size_t
unroll
=
batch_size
*
dims
.
d
[
0
];
size_t
spatial_size
=
dims
.
d
[
1
]
*
dims
.
d
[
2
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluElementWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
static
inline
void
PReluScalar
(
cudaStream_t
stream
,
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
batch_size
,
const
nvinfer1
::
Dims
&
dims
)
{
size_t
unroll
=
batch_size
*
dims
.
d
[
0
];
size_t
spatial_size
=
dims
.
d
[
1
]
*
dims
.
d
[
2
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluScalarKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
nvinfer1
::
Dims
PReluPlugin
::
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputDims
,
int
nbInputs
)
{
assert
(
nbInputs
==
1
);
assert
(
index
<
this
->
getNbOutputs
());
nvinfer1
::
Dims
const
&
input_dims
=
inputDims
[
0
];
nvinfer1
::
Dims
output_dims
=
input_dims
;
return
output_dims
;
}
int
PReluPlugin
::
initialize
()
{
nvinfer1
::
Weights
&
alpha
=
cuda_alpha_
.
get
();
alpha
.
type
=
alpha_
.
get
().
type
;
alpha
.
count
=
alpha_
.
get
().
count
;
CHECK_EQ
(
cudaMalloc
(
&
alpha
.
values
,
alpha
.
count
*
sizeof
(
float
)),
cudaSuccess
);
CHECK_EQ
(
cudaMemcpy
(
const_cast
<
void
*>
(
alpha
.
values
),
alpha_
.
get
().
values
,
alpha
.
count
*
sizeof
(
float
),
cudaMemcpyHostToDevice
),
cudaSuccess
);
return
0
;
}
int
PReluPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
// input dims is CHW.
const
auto
&
input_dims
=
this
->
getInputDims
(
0
);
const
float
*
input
=
reinterpret_cast
<
const
float
*>
(
inputs
[
0
]);
const
float
*
alpha
=
reinterpret_cast
<
const
float
*>
(
cuda_alpha_
.
get
().
values
);
float
*
output
=
reinterpret_cast
<
float
**>
(
outputs
)[
0
];
if
(
mode_
==
"channel"
)
{
PReluChannelWise
(
stream
,
input
,
alpha
,
output
,
batchSize
,
input_dims
);
}
else
if
(
mode_
==
"element"
)
{
PReluElementWise
(
stream
,
input
,
alpha
,
output
,
batchSize
,
input_dims
);
}
else
{
PReluScalar
(
stream
,
input
,
alpha
,
output
,
batchSize
,
input_dims
);
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h
0 → 100644
浏览文件 @
21f33b42
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
PReluPlugin
:
public
PluginTensorRT
{
TensorRTEngine
::
Weight
alpha_
;
TensorRTEngine
::
Weight
cuda_alpha_
;
std
::
string
mode_
;
protected:
size_t
getSerializationSize
()
override
{
// return getBaseSerializationSize(alpha_) + SerializedSize(mode_);
return
0
;
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
void
serialize
(
void
*
buffer
)
override
{
// serializeBase(buffer);
// SerializeValue(&buffer, alpha_);
// SerializeValue(&buffer, mode_);
}
public:
PReluPlugin
(
TensorRTEngine
::
Weight
const
&
alpha
,
std
::
string
const
&
mode
)
:
alpha_
(
alpha
),
mode_
(
mode
)
{}
// It was used for tensorrt deserialization.
// It should not be called by users.
PReluPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
// deserializeBase(serialData, serialLength);
// DeserializeValue(&serialData, &serialLength, &alpha_);
// DeserializeValue(&serialData, &serialLength, &mode_);
}
PReluPlugin
*
clone
()
const
override
{
return
new
PReluPlugin
(
alpha_
,
mode_
);
}
const
char
*
getPluginType
()
const
override
{
return
"prelu"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
initialize
()
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录