Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4c38b87e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4c38b87e
编写于
12月 02, 2022
作者:
G
gem5
提交者:
GitHub
12月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some compare and logical trt converter (#48592)
上级
fcf26279
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
608 addition
and
14 deletion
+608
-14
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+6
-0
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+81
-14
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+38
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_compare_and_logical.py
...ests/ir/inference/test_trt_convert_compare_and_logical.py
+483
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
4c38b87e
...
...
@@ -2238,6 +2238,12 @@ USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER
(
elementwise_min_tensor
);
USE_TRT_CONVERTER
(
elementwise_pow_tensor
);
USE_TRT_CONVERTER
(
elementwise_floordiv_tensor
);
USE_TRT_CONVERTER
(
less_than
);
USE_TRT_CONVERTER
(
greater_than
);
USE_TRT_CONVERTER
(
logical_or
);
USE_TRT_CONVERTER
(
logical_xor
);
USE_TRT_CONVERTER
(
logical_and
);
USE_TRT_CONVERTER
(
less_equal
);
USE_TRT_CONVERTER
(
transpose
);
USE_TRT_CONVERTER
(
transpose2
);
USE_TRT_CONVERTER
(
flatten
);
...
...
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
100644 → 100755
浏览文件 @
4c38b87e
...
...
@@ -74,8 +74,12 @@ class ElementwiseTensorOpConverter : public OpConverter {
nvinfer1
::
Dims
dims_y
=
Y
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
int
axis
=
-
1
;
// axis here is relative to explicit batch
int
axis
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
if
(
op_type_
!=
"logical_or"
&&
op_type_
!=
"logical_xor"
&&
op_type_
!=
"logical_and"
)
{
axis
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
}
int
real_x_rank
=
dims_x
.
nbDims
;
int
real_y_rank
=
dims_y
.
nbDims
;
if
(
!
engine_
->
with_dynamic_shape
())
{
...
...
@@ -139,17 +143,40 @@ class ElementwiseTensorOpConverter : public OpConverter {
X
=
tmp
;
}
auto
op_pair
=
ops
.
find
(
op_type_
);
PADDLE_ENFORCE_NE
(
op_pair
,
ops
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Elementwise op's type(%s) is not supported. Please "
"check if the op_type is correct."
,
op_type_
));
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
op_pair
->
second
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
if
(
op_type_
==
"less_equal"
)
{
auto
*
less_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
nvinfer1
::
ElementWiseOperation
::
kLESS
);
auto
*
equal_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
nvinfer1
::
ElementWiseOperation
::
kEQUAL
);
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
(
less_layer
->
getOutput
(
0
)),
*
(
equal_layer
->
getOutput
(
0
)),
nvinfer1
::
ElementWiseOperation
::
kOR
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
}
else
{
auto
op_pair
=
ops
.
find
(
op_type_
);
PADDLE_ENFORCE_NE
(
op_pair
,
ops
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Elementwise op's type(%s) is not supported. Please "
"check if the op_type is correct."
,
op_type_
));
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
op_pair
->
second
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
}
}
protected:
...
...
@@ -168,6 +195,11 @@ const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
{
"pow"
,
nvinfer1
::
ElementWiseOperation
::
kPOW
},
{
"max"
,
nvinfer1
::
ElementWiseOperation
::
kMAX
},
{
"floordiv"
,
nvinfer1
::
ElementWiseOperation
::
kFLOOR_DIV
},
{
"less_than"
,
nvinfer1
::
ElementWiseOperation
::
kLESS
},
{
"greater_than"
,
nvinfer1
::
ElementWiseOperation
::
kGREATER
},
{
"logical_or"
,
nvinfer1
::
ElementWiseOperation
::
kOR
},
{
"logical_xor"
,
nvinfer1
::
ElementWiseOperation
::
kXOR
},
{
"logical_and"
,
nvinfer1
::
ElementWiseOperation
::
kAND
},
};
class
ElementwiseTensorAddOpConverter
:
public
ElementwiseTensorOpConverter
{
...
...
@@ -204,13 +236,41 @@ class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
public:
ElementwiseTensorPowOpConverter
()
{
op_type_
=
"pow"
;
}
};
class
ElementwiseTensorFloorDivOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorFloorDivOpConverter
()
{
op_type_
=
"floordiv"
;
}
};
class
ElementwiseTensorLessThanOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLessThanOpConverter
()
{
op_type_
=
"less_than"
;
}
};
class
ElementwiseTensorGreaterThanOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorGreaterThanOpConverter
()
{
op_type_
=
"greater_than"
;
}
};
class
ElementwiseTensorLogicalOrOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLogicalOrOpConverter
()
{
op_type_
=
"logical_or"
;
}
};
class
ElementwiseTensorLogicalXorOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLogicalXorOpConverter
()
{
op_type_
=
"logical_xor"
;
}
};
class
ElementwiseTensorLogicalAndOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLogicalAndOpConverter
()
{
op_type_
=
"logical_and"
;
}
};
class
ElementwiseTensorLessEqualOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLessEqualOpConverter
()
{
op_type_
=
"less_equal"
;
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
...
...
@@ -248,3 +308,10 @@ REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
ElementwiseTensorPowOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_floordiv_tensor
,
ElementwiseTensorFloorDivOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
less_than
,
ElementwiseTensorLessThanOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
greater_than
,
ElementwiseTensorGreaterThanOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_or
,
ElementwiseTensorLogicalOrOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_xor
,
ElementwiseTensorLogicalXorOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_and
,
ElementwiseTensorLogicalAndOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
less_equal
,
ElementwiseTensorLessEqualOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
4c38b87e
...
...
@@ -1322,6 +1322,32 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"less_than"
||
op_type
==
"greater_than"
||
op_type
==
"logical_or"
||
op_type
==
"logical_xor"
||
op_type
==
"logical_and"
||
op_type
==
"less_equal"
)
{
#if IS_TRT_VERSION_GE(8400)
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"these ops do not support static shape yet"
;
return
false
;
}
if
(
op_type
==
"logical_or"
||
op_type
==
"logical_xor"
||
op_type
==
"logical_and"
)
{
auto
*
block
=
desc
.
Block
();
auto
*
x_var_desc
=
block
->
FindVar
(
desc
.
Input
(
"X"
)[
0
]);
auto
*
y_var_desc
=
block
->
FindVar
(
desc
.
Input
(
"Y"
)[
0
]);
auto
x_dtype
=
x_var_desc
->
GetDataType
();
auto
y_dtype
=
y_var_desc
->
GetDataType
();
if
(
x_dtype
!=
framework
::
proto
::
VarType
::
BOOL
||
y_dtype
!=
framework
::
proto
::
VarType
::
BOOL
)
{
VLOG
(
3
)
<<
"the op only support input of BOOL."
;
return
false
;
}
}
#else
VLOG
(
3
)
<<
"these are not supported when TensorRT < 8.4"
;
return
false
;
#endif
}
if
(
op_type
==
"elementwise_add"
||
op_type
==
"elementwise_mul"
||
op_type
==
"elementwise_sub"
||
op_type
==
"elementwise_div"
||
op_type
==
"elementwise_pow"
||
op_type
==
"elementwise_min"
||
...
...
@@ -2382,6 +2408,12 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_max"
,
"elementwise_floordiv"
,
"equal"
,
"less_than"
,
"greater_than"
,
"logical_or"
,
"logical_xor"
,
"logical_and"
,
"less_equal"
,
"dropout"
,
"fill_any_like"
,
"prelu"
,
...
...
@@ -2514,6 +2546,12 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_max"
,
"elementwise_floordiv"
,
"equal"
,
"less_than"
,
"greater_than"
,
"logical_or"
,
"logical_xor"
,
"logical_and"
,
"less_equal"
,
"dropout"
,
"fill_any_like"
,
"prelu"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_compare_and_logical.py
0 → 100755
浏览文件 @
4c38b87e
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertLogicalTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"logical_and"
,
"logical_or"
,
"logical_xor"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
5
,
"out_dtype"
:
0
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data1"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"cast_output_data1"
:
np
.
bool
},
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data2"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data3"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"cast_output_data1"
:
np
.
bool
},
},
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data1"
],
"Y"
:
[
"cast_output_data3"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
2
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
:
return
0
,
7
return
1
,
3
return
0
,
7
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertCompareTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"less_than"
,
"greater_than"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
1
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
:
return
0
,
5
if
not
dynamic_shape
:
return
0
,
5
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertLessEqualTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"less_equal"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
5
,
"out_dtype"
:
2
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data1"
]},
"op_attrs"
:
dics
[
1
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data2"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data2"
]},
"op_attrs"
:
dics
[
1
],
},
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data1"
],
"Y"
:
[
"cast_output_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
2
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
ver
=
paddle_infer
.
get_trt_compile_version
()
if
(
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
or
not
dynamic_shape
):
return
2
,
5
else
:
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录