transforms.py 63.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import random

import numpy as np
import numbers
import collections
import traceback

24
import paddle
L
LielinJiang 已提交
25 26 27 28 29 30 31 32 33
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

34
__all__ = []
L
LielinJiang 已提交
35 36


37 38 39 40 41
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
42
    elif F._is_tensor_image(img):
43 44 45 46 47 48
        if len(img.shape) == 3:
            return img.shape[1:][::-1]  # chw -> wh
        elif len(img.shape) == 4:
            return img.shape[2:][::-1]  # nchw -> wh
        else:
            raise ValueError(
49 50 51 52
                "The dim for input Tensor should be 3-D or 4-D, but received {}".format(
                    len(img.shape)
                )
            )
53 54 55 56
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


57 58 59
def _check_input(
    value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True
):
60 61 62 63
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
64 65 66
                    name
                )
            )
67 68 69 70 71
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
72 73 74
            raise ValueError(
                "{} values should be between {}".format(name, bound)
            )
75 76
    else:
        raise TypeError(
77 78 79 80
            "{} should be a single number or a list/tuple with lenght 2.".format(
                name
            )
        )
81 82 83 84 85 86

    if value[0] == value[1] == center:
        value = None
    return value


87
class Compose:
L
LielinJiang 已提交
88 89 90 91 92
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
93
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
94 95 96 97 98 99

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
100

L
LielinJiang 已提交
101 102
        .. code-block:: python

103 104
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
105 106 107 108 109 110

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
111
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
112 113 114 115 116 117

    """

    def __init__(self, transforms):
        self.transforms = transforms

118
    def __call__(self, data):
L
LielinJiang 已提交
119 120
        for f in self.transforms:
            try:
121
                data = f(data)
L
LielinJiang 已提交
122 123
            except Exception as e:
                stack_info = traceback.format_exc()
124 125 126 127
                print(
                    "fail to perform transform [{}] with error: "
                    "{} and stack:\n{}".format(f, e, str(stack_info))
                )
L
LielinJiang 已提交
128 129 130 131 132 133 134 135 136 137 138 139
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


140
class BaseTransform:
141 142
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
143

144
    calling logic:
145 146 147 148

        if keys is None:
            _get_params -> _apply_image()
        else:
149
            _get_params -> _apply_*() for * in keys
150 151 152

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
153

154 155 156 157
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
158
            is (image, image) type, then the keys should be ("image", "image").
159 160 161 162
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

163 164 165 166 167
            - "image": input image, with shape of (H, W, C)
            - "coords": coordinates, with shape of (N, 2)
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format,

                       the 1st "xy" represents top left point of a box,
168 169 170
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
171

172 173
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
174

L
LielinJiang 已提交
175
    Examples:
176

L
LielinJiang 已提交
177 178 179
        .. code-block:: python

            import numpy as np
180 181 182 183 184 185 186 187 188 189 190 191 192 193
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
194
                    super().__init__(keys)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
245 246 247

    """

248 249
    def __init__(self, keys=None):
        if keys is None:
250
            keys = ("image",)
251 252
        elif not isinstance(keys, Sequence):
            raise ValueError(
253 254
                "keys should be a sequence, but got keys={}".format(keys)
            )
255 256 257
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
258 259
                    "{} is unsupported data structure".format(k)
                )
260 261 262 263 264 265 266 267 268 269 270
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
271
            inputs = (inputs,)
272 273 274 275 276 277 278 279 280 281 282

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
283
            outputs.extend(inputs[len(self.keys) :])
284 285 286 287 288 289

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
290

291 292
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
293

294 295
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
296

297 298
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
299

300 301
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
302

303 304 305 306

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
307 308
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

309
    If input is a grayscale image (H x W), it will be converted to an image of shape (H x W x 1).
L
LielinJiang 已提交
310 311 312 313
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

314 315 316
    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr,
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8.
317 318 319 320

    In the other cases, tensors are returned without scaling.

    Args:
321
        data_format (str, optional): Data format of output tensor, should be 'HWC' or
322 323
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
324

325 326 327 328 329 330 331
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

332
    Examples:
333

334 335 336 337 338 339 340 341
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
342
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
343 344 345 346

            transform = T.ToTensor()

            tensor = transform(fake_img)
347

L
Liyulingyue 已提交
348 349
            print(tensor.shape)
            # [3, 4, 5]
350

L
Liyulingyue 已提交
351 352
            print(tensor.dtype)
            # paddle.float32
353 354 355
    """

    def __init__(self, data_format='CHW', keys=None):
356
        super().__init__(keys)
357 358 359 360 361 362 363 364 365 366 367 368 369 370
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
371 372 373 374 375 376 377 378
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
379 380 381 382 383 384 385
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
            when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
386
            - "hamming": Image.HAMMING
387 388 389 390 391
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
392 393
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
394

395 396 397 398 399 400 401
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
402
    Examples:
403

L
LielinJiang 已提交
404 405 406
        .. code-block:: python

            import numpy as np
407
            from PIL import Image
408
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
409

410
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
411

412 413 414 415 416 417 418 419 420
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
421 422
    """

423
    def __init__(self, size, interpolation='bilinear', keys=None):
424
        super().__init__(keys)
425 426 427
        assert isinstance(size, int) or (
            isinstance(size, Iterable) and len(size) == 2
        )
L
LielinJiang 已提交
428 429 430
        self.size = size
        self.interpolation = interpolation

431
    def _apply_image(self, img):
L
LielinJiang 已提交
432 433 434
        return F.resize(img, self.size, self.interpolation)


435
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
436 437 438 439 440 441
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
442
        size (int|list|tuple): Target size of output image, with (height, width) shape.
443
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin
444
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
445
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
446 447 448 449 450 451 452
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend,
            support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
453
            - "hamming": Image.HAMMING
454 455 456 457 458
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
459 460
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
461

462 463 464 465 466 467 468
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
469
    Examples:
470

L
LielinJiang 已提交
471 472 473
        .. code-block:: python

            import numpy as np
474
            from PIL import Image
475
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
476 477 478

            transform = RandomResizedCrop(224)

479
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
480 481

            fake_img = transform(fake_img)
482 483
            print(fake_img.size)

L
LielinJiang 已提交
484 485
    """

486 487 488 489 490 491 492 493
    def __init__(
        self,
        size,
        scale=(0.08, 1.0),
        ratio=(3.0 / 4, 4.0 / 3),
        interpolation='bilinear',
        keys=None,
    ):
494
        super().__init__(keys)
495 496
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
497
        else:
498
            self.size = size
499 500
        assert scale[0] <= scale[1], "scale should be of kind (min, max)"
        assert ratio[0] <= ratio[1], "ratio should be of kind (min, max)"
L
LielinJiang 已提交
501 502 503 504
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

505 506
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
507 508 509 510 511 512 513 514 515 516 517
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
518 519 520
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
521 522 523 524 525 526 527 528 529

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
530 531
        else:
            # return whole image
L
LielinJiang 已提交
532 533
            w = width
            h = height
534 535 536
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
537

538 539
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
540

541
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
542 543 544
        return F.resize(cropped_img, self.size, self.interpolation)


545
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
546 547 548
    """Crops the given the input data at the center.

    Args:
549 550 551
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

552 553 554 555 556 557 558
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
559
    Examples:
560

L
LielinJiang 已提交
561 562 563
        .. code-block:: python

            import numpy as np
564
            from PIL import Image
565
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
566 567 568

            transform = CenterCrop(224)

569
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
570 571

            fake_img = transform(fake_img)
572
            print(fake_img.size)
L
LielinJiang 已提交
573 574
    """

575
    def __init__(self, size, keys=None):
576
        super().__init__(keys)
577 578
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
579
        else:
580
            self.size = size
L
LielinJiang 已提交
581

582 583
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
584 585


586
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
587 588 589
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
590
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
591
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
592

593 594 595 596 597 598 599
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
600
    Examples:
601

L
LielinJiang 已提交
602 603 604
        .. code-block:: python

            import numpy as np
605
            from PIL import Image
606
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
607

B
Bin Lu 已提交
608
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
609

610
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
611 612

            fake_img = transform(fake_img)
613
            print(fake_img.size)
L
LielinJiang 已提交
614 615
    """

616
    def __init__(self, prob=0.5, keys=None):
617
        super().__init__(keys)
I
IMMORTAL 已提交
618
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
619 620
        self.prob = prob

621 622 623
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
624 625 626
        return img


627
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
628 629 630
    """Vertically flip the input data randomly with a given probability.

    Args:
631 632
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
633

634 635 636 637 638 639 640
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
641
    Examples:
642

L
LielinJiang 已提交
643 644 645
        .. code-block:: python

            import numpy as np
646
            from PIL import Image
647
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
648

649
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
650

651
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
652 653

            fake_img = transform(fake_img)
654 655
            print(fake_img.size)

L
LielinJiang 已提交
656 657
    """

658
    def __init__(self, prob=0.5, keys=None):
659
        super().__init__(keys)
I
IMMORTAL 已提交
660
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
661 662
        self.prob = prob

663 664 665
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
666 667 668
        return img


669
class Normalize(BaseTransform):
L
LielinJiang 已提交
670 671 672 673 674 675
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
676 677
        mean (int|float|list|tuple, optional): Sequence of means for each channel.
        std (int|float|list|tuple, optional): Sequence of standard deviations for each channel.
678
        data_format (str, optional): Data format of img, should be 'HWC' or
679 680 681
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
682 683 684 685 686 687 688 689

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
690
    Examples:
691

L
LielinJiang 已提交
692
        .. code-block:: python
693 694
          :name: code-example
            import paddle
695
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
696

697
            normalize = Normalize(mean=[127.5, 127.5, 127.5],
698 699
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
700

701
            fake_img = paddle.rand([300,320,3]).numpy() * 255.
L
LielinJiang 已提交
702 703 704

            fake_img = normalize(fake_img)
            print(fake_img.shape)
705 706 707
            # (300, 320, 3)
            print(fake_img.max(), fake_img.min())
            # 0.99999905 -0.999974
708

L
LielinJiang 已提交
709 710
    """

711 712 713
    def __init__(
        self, mean=0.0, std=1.0, data_format='CHW', to_rgb=False, keys=None
    ):
714
        super().__init__(keys)
L
LielinJiang 已提交
715 716 717 718
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
719
            std = [std, std, std]
L
LielinJiang 已提交
720

721 722 723 724
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
725

726
    def _apply_image(self, img):
727 728 729
        return F.normalize(
            img, self.mean, self.std, self.data_format, self.to_rgb
        )
L
LielinJiang 已提交
730 731


732 733
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
734 735
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
736
    output image will be an instance of numpy.ndarray.
L
LielinJiang 已提交
737 738

    Args:
739 740
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
741

742 743
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
744
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input
745 746 747 748 749
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
750
    Examples:
751

L
LielinJiang 已提交
752 753 754
        .. code-block:: python

            import numpy as np
755 756
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
757

758
            transform = Transpose()
L
LielinJiang 已提交
759

760
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
761 762 763

            fake_img = transform(fake_img)
            print(fake_img.shape)
764

L
LielinJiang 已提交
765 766
    """

767
    def __init__(self, order=(2, 0, 1), keys=None):
768
        super().__init__(keys)
769 770 771
        self.order = order

    def _apply_image(self, img):
772 773 774
        if F._is_tensor_image(img):
            return img.transpose(self.order)

775 776
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
777

778 779
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
780
        return img.transpose(self.order)
L
LielinJiang 已提交
781 782


783
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
784 785 786 787 788
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
789
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
790

791 792 793 794 795 796 797
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
798
    Examples:
799

L
LielinJiang 已提交
800 801 802
        .. code-block:: python

            import numpy as np
803
            from PIL import Image
804
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
805 806 807

            transform = BrightnessTransform(0.4)

808
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
809 810

            fake_img = transform(fake_img)
811

L
LielinJiang 已提交
812 813
    """

814
    def __init__(self, value, keys=None):
815
        super().__init__(keys)
816
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
817

818 819
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
820 821
            return img

822 823
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
824 825


826
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
827 828 829 830 831
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
832
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
833

834 835 836 837 838 839 840
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
841
    Examples:
842

L
LielinJiang 已提交
843 844 845
        .. code-block:: python

            import numpy as np
846
            from PIL import Image
847
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
848 849 850

            transform = ContrastTransform(0.4)

851
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
852 853

            fake_img = transform(fake_img)
854

L
LielinJiang 已提交
855 856
    """

857
    def __init__(self, value, keys=None):
858
        super().__init__(keys)
L
LielinJiang 已提交
859 860
        if value < 0:
            raise ValueError("contrast value should be non-negative")
861
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
862

863 864
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
865 866
            return img

867 868
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
869 870


871
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
872 873 874 875 876
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
877
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
878

879 880 881 882 883 884 885
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
886
    Examples:
887

L
LielinJiang 已提交
888 889 890
        .. code-block:: python

            import numpy as np
891
            from PIL import Image
892
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
893 894 895

            transform = SaturationTransform(0.4)

896
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
897

L
LielinJiang 已提交
898
            fake_img = transform(fake_img)
899

L
LielinJiang 已提交
900 901
    """

902
    def __init__(self, value, keys=None):
903
        super().__init__(keys)
904
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
905

906 907
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
908 909
            return img

910 911
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
912

L
LielinJiang 已提交
913

914
class HueTransform(BaseTransform):
L
LielinJiang 已提交
915 916 917 918 919
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
920
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
921

922 923 924 925 926 927 928
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
929
    Examples:
930

L
LielinJiang 已提交
931 932 933
        .. code-block:: python

            import numpy as np
934
            from PIL import Image
935
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
936 937 938

            transform = HueTransform(0.4)

939
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
940 941

            fake_img = transform(fake_img)
942

L
LielinJiang 已提交
943 944
    """

945
    def __init__(self, value, keys=None):
946
        super().__init__(keys)
947 948 949
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False
        )
L
LielinJiang 已提交
950

951 952
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
953 954
            return img

955 956
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
957 958


959
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
960 961 962
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
963
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
964
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
965
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
966
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
967
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
968
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
969
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
970
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
971
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
972

973 974 975 976 977 978 979
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
980
    Examples:
981

L
LielinJiang 已提交
982 983 984
        .. code-block:: python

            import numpy as np
985
            from PIL import Image
986
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
987

988
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
989

990
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
991 992

            fake_img = transform(fake_img)
993

L
LielinJiang 已提交
994 995
    """

996 997 998
    def __init__(
        self, brightness=0, contrast=0, saturation=0, hue=0, keys=None
    ):
999
        super().__init__(keys)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
1014
        transforms = []
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1027 1028

        random.shuffle(transforms)
1029
        transform = Compose(transforms)
L
LielinJiang 已提交
1030

1031
        return transform
L
LielinJiang 已提交
1032

1033 1034 1035 1036
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1037

1038 1039 1040
        Returns:
            PIL Image: Color jittered image.
        """
1041 1042 1043
        transform = self._get_param(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1044 1045 1046 1047
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1048 1049 1050 1051 1052 1053
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
1054
        padding (int|sequence, optional): Optional padding on each border
1055
            of the image. If a sequence of length 4 is provided, it is used to pad left,
1056 1057
            top, right, bottom borders respectively. Default: None, without padding.
        pad_if_needed (boolean, optional): It will pad the image if smaller than the
L
LielinJiang 已提交
1058
            desired size to avoid raising an exception. Default: False.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        fill (float|tuple, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0.
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                   padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                   will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                     padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                     will result in [2, 1, 1, 2, 3, 4, 4, 3]
1077
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1078

1079
    Shape
1080 1081 1082 1083 1084 1085
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1086
    Examples:
1087

L
LielinJiang 已提交
1088
        .. code-block:: python
1089
          :name: code-example1
L
LielinJiang 已提交
1090

1091
            import paddle
1092
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1093 1094
            transform = RandomCrop(224)

1095 1096
            fake_img = paddle.randint(0, 255, shape=(3, 324,300), dtype = 'int32')
            print(fake_img.shape) # [3, 324, 300]
L
LielinJiang 已提交
1097

1098 1099
            crop_img = transform(fake_img)
            print(crop_img.shape) # [3, 224, 224]
L
LielinJiang 已提交
1100 1101
    """

1102 1103 1104 1105 1106 1107 1108 1109 1110
    def __init__(
        self,
        size,
        padding=None,
        pad_if_needed=False,
        fill=0,
        padding_mode='constant',
        keys=None,
    ):
1111
        super().__init__(keys)
L
LielinJiang 已提交
1112 1113 1114 1115 1116 1117
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1118 1119
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1120

1121
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1122 1123 1124
        """Get parameters for ``crop`` for a random crop.

        Args:
1125
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1126 1127 1128 1129 1130
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1131
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1132 1133 1134 1135
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1136 1137
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1138 1139
        return i, j, th, tw

1140
    def _apply_image(self, img):
L
LielinJiang 已提交
1141 1142
        """
        Args:
1143
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1144

1145 1146
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1147
        """
1148 1149 1150 1151
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1152 1153

        # pad the width if needed
1154
        if self.pad_if_needed and w < self.size[1]:
1155 1156 1157
            img = F.pad(
                img, (self.size[1] - w, 0), self.fill, self.padding_mode
            )
L
LielinJiang 已提交
1158
        # pad the height if needed
1159
        if self.pad_if_needed and h < self.size[0]:
1160 1161 1162
            img = F.pad(
                img, (0, self.size[0] - h), self.fill, self.padding_mode
            )
L
LielinJiang 已提交
1163

1164
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1165

1166
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1167 1168


1169
class Pad(BaseTransform):
L
LielinJiang 已提交
1170 1171 1172 1173
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1174 1175
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1176 1177
            this is the padding for the left, top, right and bottom borders
            respectively.
1178
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1179 1180 1181
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
1182 1183 1184 1185
            ``constant`` means pads with a constant value, this value is specified with fill.
            ``edge`` means pads with the last value at the edge of the image.
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
L
LielinJiang 已提交
1186 1187
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
1188
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
L
LielinJiang 已提交
1189
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1190
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1191

1192 1193 1194 1195 1196 1197 1198
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1199
    Examples:
1200

L
LielinJiang 已提交
1201 1202 1203
        .. code-block:: python

            import numpy as np
1204
            from PIL import Image
1205
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1206 1207 1208

            transform = Pad(2)

1209
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1210 1211

            fake_img = transform(fake_img)
1212
            print(fake_img.size)
L
LielinJiang 已提交
1213 1214
    """

1215
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1216 1217 1218
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1219 1220 1221 1222 1223 1224 1225

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1226
            raise ValueError(
1227 1228 1229
                "Padding must be an int or a 2, or 4 element tuple, not a "
                + "{} element tuple".format(len(padding))
            )
L
LielinJiang 已提交
1230

1231
        super().__init__(keys)
L
LielinJiang 已提交
1232 1233 1234 1235
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1236
    def _apply_image(self, img):
L
LielinJiang 已提交
1237 1238
        """
        Args:
1239 1240
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1241
        Returns:
1242
            PIL Image: Padded image.
L
LielinJiang 已提交
1243 1244 1245 1246
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1247
def _check_sequence_input(x, name, req_sizes):
1248 1249 1250 1251 1252
    msg = (
        req_sizes[0]
        if len(req_sizes) < 2
        else " or ".join([str(s) for s in req_sizes])
    )
1253 1254 1255 1256 1257 1258
    if not isinstance(x, Sequence):
        raise TypeError(f"{name} should be a sequence of length {msg}.")
    if len(x) not in req_sizes:
        raise ValueError(f"{name} should be sequence of length {msg}.")


1259
def _setup_angle(x, name, req_sizes=(2,)):
1260 1261 1262
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError(
1263 1264
                f"If {name} is a single number, it must be positive."
            )
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]


class RandomAffine(BaseTransform):
    """Random affine transformation of the image.

    Args:
        degrees (int|float|tuple): The angle interval of the random rotation.
            If set as a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate.
        translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations.
            For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a
1281
            and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b.
1282
            Default is None, will not translate.
1283
        scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b.
1284 1285
            Default is None, will keep original scale and not scale.
        shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order.
1286 1287
            If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied.
            Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied.
1288 1289
            Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Default is None, will not apply shear.
1290 1291 1292 1293 1294 1295
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend.
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1296
            - "bicubic": Image.BICUBIC
1297 1298 1299
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        center (2-tuple, optional): Optional center of rotation, (x, y).
            Origin is the upper left corner.
            Default is the center of the image.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image.

    Returns:
        A callable object of RandomAffine.

    Examples:
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomAffine

            transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10])

            fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    def __init__(
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation='nearest',
        fill=0,
        center=None,
        keys=None,
    ):
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1342

1343
        super().__init__(keys)
1344 1345 1346 1347
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        self.interpolation = interpolation

        if translate is not None:
1348
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1349 1350 1351
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
1352 1353
                        "translation values should be between 0 and 1"
                    )
1354 1355 1356
        self.translate = translate

        if scale is not None:
1357
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")
        self.fill = fill

        if center is not None:
1375
            _check_sequence_input(center, "center", req_sizes=(2,))
1376 1377
        self.center = center

1378 1379 1380
    def _get_param(
        self, img_size, degrees, translate=None, scale_ranges=None, shears=None
    ):
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        """Get parameters for affine transformation

        Returns:
            params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])

        if translate is not None:
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(random.uniform(-max_dx, max_dx))
            ty = int(random.uniform(-max_dy, max_dy))
            translations = (tx, ty)
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        shear_x, shear_y = 0.0, 0.0
        if shears is not None:
            shear_x = random.uniform(shears[0], shears[1])
            if len(shears) == 4:
                shear_y = random.uniform(shears[2], shears[3])
        shear = (shear_x, shear_y)

        return angle, translations, scale, shear

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array): Image to be affine transformed.

        Returns:
            PIL.Image or np.array: Affine transformed image.
        """

        w, h = _get_image_size(img)
        img_size = [w, h]

1423 1424 1425
        ret = self._get_param(
            img_size, self.degrees, self.translate, self.scale, self.shear
        )
1426

1427 1428 1429 1430 1431 1432 1433
        return F.affine(
            img,
            *ret,
            interpolation=self.interpolation,
            fill=self.fill,
            center=self.center,
        )
1434 1435


1436
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1437 1438 1439 1440 1441 1442
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1443 1444 1445 1446 1447
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend. when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1448
            - "bicubic": Image.BICUBIC
1449 1450 1451
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1452
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1453 1454 1455 1456 1457 1458 1459
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1460
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1461

1462 1463 1464 1465 1466 1467 1468
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1469
    Examples:
1470

L
LielinJiang 已提交
1471 1472 1473
        .. code-block:: python

            import numpy as np
1474 1475
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1476

1477
            transform = RandomRotation(90)
L
LielinJiang 已提交
1478

1479
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1480 1481

            fake_img = transform(fake_img)
1482
            print(fake_img.size)
L
LielinJiang 已提交
1483 1484
    """

1485 1486 1487 1488 1489 1490 1491 1492 1493
    def __init__(
        self,
        degrees,
        interpolation='nearest',
        expand=False,
        center=None,
        fill=0,
        keys=None,
    ):
L
LielinJiang 已提交
1494 1495 1496
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
1497 1498
                    "If degrees is a single number, it must be positive."
                )
L
LielinJiang 已提交
1499 1500 1501 1502
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
1503 1504
                    "If degrees is a sequence, it must be of len 2."
                )
L
LielinJiang 已提交
1505 1506
            self.degrees = degrees

1507
        super().__init__(keys)
1508
        self.interpolation = interpolation
L
LielinJiang 已提交
1509 1510
        self.expand = expand
        self.center = center
1511
        self.fill = fill
L
LielinJiang 已提交
1512

1513
    def _get_param(self, degrees):
L
LielinJiang 已提交
1514 1515 1516 1517
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1518
    def _apply_image(self, img):
L
LielinJiang 已提交
1519
        """
1520 1521 1522
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1523
        Returns:
1524
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1525 1526
        """

1527
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1528

1529 1530 1531
        return F.rotate(
            img, angle, self.interpolation, self.expand, self.center, self.fill
        )
L
LielinJiang 已提交
1532 1533


1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
class RandomPerspective(BaseTransform):
    """Random perspective transformation with a given probability.

    Args:
        prob (float, optional): Probability of using transformation, ranges from
            0 to 1, default is 0.5.
        distortion_scale (float, optional): Degree of distortion, ranges from
            0 to 1, default is 0.5.
        interpolation (str, optional): Interpolation method. If omitted, or if
            the image has only one channel, it is set to PIL.Image.NEAREST or
            cv2.INTER_NEAREST.
1545 1546 1547
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1548
            - "bicubic": Image.BICUBIC
1549 1550 1551
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A perspectived image.

    Returns:
        A callable object of RandomPerspective.

    Examples:
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomPerspective

            transform = RandomPerspective(prob=1.0, distortion_scale=0.9)

            fake_img = paddle.randn((3, 200, 150)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

1579 1580 1581 1582 1583 1584 1585 1586
    def __init__(
        self,
        prob=0.5,
        distortion_scale=0.5,
        interpolation='nearest',
        fill=0,
        keys=None,
    ):
1587
        super().__init__(keys)
1588
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
1589 1590 1591
        assert (
            0 <= distortion_scale <= 1
        ), "distortion_scale must be between 0 and 1"
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        assert isinstance(fill, (numbers.Number, str, list, tuple))

        self.prob = prob
        self.distortion_scale = distortion_scale
        self.interpolation = interpolation
        self.fill = fill

    def get_params(self, width, height, distortion_scale):
        """
        Returns:
            startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image,
            endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = height // 2
        half_width = width // 2
        topleft = [
1609 1610
            int(random.uniform(0, int(distortion_scale * half_width) + 1)),
            int(random.uniform(0, int(distortion_scale * half_height) + 1)),
1611 1612 1613
        ]
        topright = [
            int(
1614 1615 1616 1617 1618
                random.uniform(
                    width - int(distortion_scale * half_width) - 1, width
                )
            ),
            int(random.uniform(0, int(distortion_scale * half_height) + 1)),
1619 1620 1621
        ]
        botright = [
            int(
1622 1623 1624 1625
                random.uniform(
                    width - int(distortion_scale * half_width) - 1, width
                )
            ),
1626
            int(
1627 1628 1629 1630
                random.uniform(
                    height - int(distortion_scale * half_height) - 1, height
                )
            ),
1631 1632
        ]
        botleft = [
1633
            int(random.uniform(0, int(distortion_scale * half_width) + 1)),
1634
            int(
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
                random.uniform(
                    height - int(distortion_scale * half_height) - 1, height
                )
            ),
        ]
        startpoints = [
            [0, 0],
            [width - 1, 0],
            [width - 1, height - 1],
            [0, height - 1],
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        ]
        endpoints = [topleft, topright, botright, botleft]

        return startpoints, endpoints

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array|paddle.Tensor): Image to be Perspectively transformed.

        Returns:
            PIL.Image|np.array|paddle.Tensor: Perspectively transformed image.
        """

        width, height = _get_image_size(img)

        if random.random() < self.prob:
1662 1663 1664 1665 1666 1667
            startpoints, endpoints = self.get_params(
                width, height, self.distortion_scale
            )
            return F.perspective(
                img, startpoints, endpoints, self.interpolation, self.fill
            )
1668 1669 1670
        return img


1671
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1672 1673 1674
    """Converts image to grayscale.

    Args:
1675 1676
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1677 1678 1679

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
1680
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image.
1681 1682 1683
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1684
    Returns:
1685
        A callable object of Grayscale.
L
LielinJiang 已提交
1686 1687

    Examples:
1688

L
LielinJiang 已提交
1689 1690 1691
        .. code-block:: python

            import numpy as np
1692
            from PIL import Image
1693
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1694 1695 1696

            transform = Grayscale()

1697
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1698 1699

            fake_img = transform(fake_img)
1700
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1701 1702
    """

1703
    def __init__(self, num_output_channels=1, keys=None):
1704
        super().__init__(keys)
1705
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1706

1707
    def _apply_image(self, img):
L
LielinJiang 已提交
1708 1709
        """
        Args:
1710 1711
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1712
        Returns:
1713
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1714
        """
1715
        return F.to_grayscale(img, self.num_output_channels)
1716 1717 1718 1719 1720 1721 1722


class RandomErasing(BaseTransform):
    """Erase the pixels in a rectangle region selected randomly.

    Args:
        prob (float, optional): Probability of the input data being erased. Default: 0.5.
1723
        scale (sequence, optional): The proportional range of the erased area to the input image.
1724 1725 1726
                                    Default: (0.02, 0.33).
        ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3).
        value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with.
1727 1728 1729
                               If value is a single number, all pixels will be erased with this value.
                               If value is a sequence with length 3, the R, G, B channels will be ereased
                               respectively. If value is set to "random", each pixel will be erased with
1730 1731 1732
                               random values. Default: 0.
        inplace (bool, optional): Whether this transform is inplace. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1733

1734
    Shape:
1735
        - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W).
1736 1737 1738 1739 1740 1741 1742
                 For np.array input, the shape should be (H, W, C).
        - output(paddle.Tensor | np.array | PIL.Image): A random erased image.

    Returns:
        A callable object of RandomErasing.

    Examples:
1743

1744 1745 1746
        .. code-block:: python

            import paddle
1747

1748 1749
            fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
            transform = paddle.vision.transforms.RandomErasing()
J
JYChen 已提交
1750 1751 1752
            result = transform(fake_img)

            print(result)
1753 1754
    """

1755 1756 1757 1758 1759 1760 1761 1762 1763
    def __init__(
        self,
        prob=0.5,
        scale=(0.02, 0.33),
        ratio=(0.3, 3.3),
        value=0,
        inplace=False,
        keys=None,
    ):
1764
        super().__init__(keys)
1765
        assert isinstance(
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            scale, (tuple, list)
        ), "scale should be a tuple or list"
        assert (
            scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
        ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(
            ratio, (tuple, list)
        ), "ratio should be a tuple or list"
        assert (
            ratio[0] >= 0 and ratio[0] <= ratio[1]
        ), "ratio should be of kind (min, max)"
        assert (
            prob >= 0 and prob <= 1
        ), "The probability should be in range [0, 1]"
        assert isinstance(
            value, (numbers.Number, str, tuple, list)
        ), "value should be a number, tuple, list or str"
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")

        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _get_param(self, img, scale, ratio, value):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
1797
            scale (sequence, optional): The proportional range of the erased area to the input image.
1798 1799
            ratio (sequence, optional): Aspect ratio range of the erased area.
            value (sequence | None): The value each pixel in erased area will be replaced with.
1800
                               If value is a sequence with length 3, the R, G, B channels will be ereased
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
                               respectively. If value is None, each pixel will be erased with random values.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
        """
        if F._is_pil_image(img):
            shape = np.asarray(img).astype(np.uint8).shape
            h, w, c = shape[-3], shape[-2], shape[-1]
        elif F._is_numpy_image(img):
            h, w, c = img.shape[-3], img.shape[-2], img.shape[-1]
        elif F._is_tensor_image(img):
            c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]

        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(10):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue
            if F._is_tensor_image(img):
                if value is None:
1825
                    v = paddle.normal(shape=[c, erase_h, erase_w]).astype(
1826 1827
                        img.dtype
                    )
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
                else:
                    v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None]
            else:
                if value is None:
                    v = np.random.normal(size=[erase_h, erase_w, c]) * 255
                else:
                    v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)

            return top, left, erase_h, erase_w, v

        return 0, 0, h, w, img

    def _apply_image(self, img):
        """
        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.

        Returns:
            output (paddle.Tensor np.array | PIL.Image): A random erased image.
        """

        if random.random() < self.prob:
            if isinstance(self.value, numbers.Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
1862
            top, left, erase_h, erase_w, v = self._get_param(
1863 1864
                img, self.scale, self.ratio, value
            )
1865 1866
            return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
        return img