未验证 提交 4ba2023e 编写于 作者: L Liyulingyue 提交者: GitHub

fix en docs of paddle.vision.transforms.Normalize,...

fix en docs of paddle.vision.transforms.Normalize, paddle.vision.models.alexnet, paddle.vision.models.mobilenet, ops apis  (#42380)

* Normalize; test=document_fix

* alexnet; test=document_fix

* alexnet; test=document_fix

* vgg; test=document_fix

* mobilenetv2; test=document_fix

* mobilenetv1; test=document_fix

* alexnet; test=document_fix

* PSRoIPool; test=document_fix

* psroi_pool; test=document_fix

* roi_align; test=document_fix

* RoIAlign; test=document_fix

* alexnet; test=document_fix

* MobileNetV1; test=document_fix

* mobilenetv2;test=document_fix

* vgg; test=document_fix

* psroi_pool;test=document_fix

* ops; test=document_fix

* Normalize;test=document_fix

* normlize;test=document_fix

* Update alexnet.py

* for ci;test=document_fix

* for ci;test=document_fix
Co-authored-by: NLigoml <39876205+Ligoml@users.noreply.github.com>
上级 74c74b0f
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -175,14 +175,20 @@ def _alexnet(arch, pretrained, **kwargs): ...@@ -175,14 +175,20 @@ def _alexnet(arch, pretrained, **kwargs):
def alexnet(pretrained=False, **kwargs): def alexnet(pretrained=False, **kwargs):
"""AlexNet model """
AlexNet model
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
**kwargs: Additional keyword arguments,For details, please refer to :ref:`AlexNet <api_paddle_vision_models_AlexNet>`.
Returns:
the model of alexnet.
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example
import paddle
from paddle.vision.models import alexnet from paddle.vision.models import alexnet
# build model # build model
...@@ -190,5 +196,11 @@ def alexnet(pretrained=False, **kwargs): ...@@ -190,5 +196,11 @@ def alexnet(pretrained=False, **kwargs):
# build model and load imagenet pretrained weight # build model and load imagenet pretrained weight
# model = alexnet(pretrained=True) # model = alexnet(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
""" """
return _alexnet('alexnet', pretrained, **kwargs) return _alexnet('alexnet', pretrained, **kwargs)
...@@ -58,14 +58,14 @@ class MobileNetV1(nn.Layer): ...@@ -58,14 +58,14 @@ class MobileNetV1(nn.Layer):
`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_. `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.
Args: Args:
scale (float): scale of channels in each layer. Default: 1.0. scale (float, optional): scale of channels in each layer. Default: 1.0.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True. with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example1
import paddle import paddle
from paddle.vision.models import MobileNetV1 from paddle.vision.models import MobileNetV1
...@@ -75,6 +75,7 @@ class MobileNetV1(nn.Layer): ...@@ -75,6 +75,7 @@ class MobileNetV1(nn.Layer):
out = model(x) out = model(x)
print(out.shape) print(out.shape)
# [1, 1000]
""" """
def __init__(self, scale=1.0, num_classes=1000, with_pool=True): def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -75,14 +75,14 @@ class MobileNetV2(nn.Layer): ...@@ -75,14 +75,14 @@ class MobileNetV2(nn.Layer):
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args: Args:
scale (float): scale of channels in each layer. Default: 1.0. scale (float, optional): scale of channels in each layer. Default: 1.0.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True. with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example1
import paddle import paddle
from paddle.vision.models import MobileNetV2 from paddle.vision.models import MobileNetV2
...@@ -92,6 +92,7 @@ class MobileNetV2(nn.Layer): ...@@ -92,6 +92,7 @@ class MobileNetV2(nn.Layer):
out = model(x) out = model(x)
print(out.shape) print(out.shape)
# [1, 1000]
""" """
def __init__(self, scale=1.0, num_classes=1000, with_pool=True): def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
......
...@@ -33,13 +33,15 @@ class VGG(nn.Layer): ...@@ -33,13 +33,15 @@ class VGG(nn.Layer):
Args: Args:
features (nn.Layer): Vgg features create by function make_layers. features (nn.Layer): Vgg features create by function make_layers.
num_classes (int): Output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool): Use pool before the last three fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last three fc layer or not. Default: True.
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example
import paddle
from paddle.vision.models import VGG from paddle.vision.models import VGG
from paddle.vision.models.vgg import make_layers from paddle.vision.models.vgg import make_layers
...@@ -49,6 +51,12 @@ class VGG(nn.Layer): ...@@ -49,6 +51,12 @@ class VGG(nn.Layer):
vgg11 = VGG(features) vgg11 = VGG(features)
x = paddle.rand([1, 3, 224, 224])
out = vgg11(x)
print(out.shape)
# [1, 1000]
""" """
def __init__(self, features, num_classes=1000, with_pool=True): def __init__(self, features, num_classes=1000, with_pool=True):
......
...@@ -951,7 +951,7 @@ def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None): ...@@ -951,7 +951,7 @@ def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
boxes_num (Tensor): The number of boxes contained in each picture in the batch. boxes_num (Tensor): The number of boxes contained in each picture in the batch.
output_size (int|Tuple(int, int)) The pooled output size(H, W), data type output_size (int|Tuple(int, int)) The pooled output size(H, W), data type
is int32. If int, H and W are both equal to output_size. is int32. If int, H and W are both equal to output_size.
spatial_scale (float): Multiplicative spatial scale factor to translate ROI coords from their spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
input scale to the scale used when pooling. Default: 1.0 input scale to the scale used when pooling. Default: 1.0
name(str, optional): The default value is None. name(str, optional): The default value is None.
Normally there is no need for user to set this property. Normally there is no need for user to set this property.
...@@ -963,12 +963,15 @@ def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None): ...@@ -963,12 +963,15 @@ def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example1
import paddle import paddle
x = paddle.uniform([2, 490, 28, 28], dtype='float32') x = paddle.uniform([2, 490, 28, 28], dtype='float32')
boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32') boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
boxes_num = paddle.to_tensor([1, 2], dtype='int32') boxes_num = paddle.to_tensor([1, 2], dtype='int32')
pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0) pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0)
print(pool_out.shape)
# [3, 10, 7, 7]
""" """
check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool') check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool')
...@@ -1014,7 +1017,7 @@ class PSRoIPool(Layer): ...@@ -1014,7 +1017,7 @@ class PSRoIPool(Layer):
Args: Args:
output_size (int|Tuple(int, int)) The pooled output size(H, W), data type output_size (int|Tuple(int, int)) The pooled output size(H, W), data type
is int32. If int, H and W are both equal to output_size. is int32. If int, H and W are both equal to output_size.
spatial_scale (float): Multiplicative spatial scale factor to translate ROI coords from their spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
input scale to the scale used when pooling. Default: 1.0. input scale to the scale used when pooling. Default: 1.0.
Shape: Shape:
...@@ -1025,11 +1028,11 @@ class PSRoIPool(Layer): ...@@ -1025,11 +1028,11 @@ class PSRoIPool(Layer):
The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input. The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.
Returns: Returns:
None None.
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example1
import paddle import paddle
psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0) psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0)
...@@ -1037,7 +1040,7 @@ class PSRoIPool(Layer): ...@@ -1037,7 +1040,7 @@ class PSRoIPool(Layer):
boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32') boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
boxes_num = paddle.to_tensor([1, 2], dtype='int32') boxes_num = paddle.to_tensor([1, 2], dtype='int32')
pool_out = psroi_module(x, boxes, boxes_num) pool_out = psroi_module(x, boxes, boxes_num)
print(pool_out.shape) # [3, 10, 7, 7]
""" """
def __init__(self, output_size, spatial_scale=1.0): def __init__(self, output_size, spatial_scale=1.0):
...@@ -1187,7 +1190,7 @@ def roi_align(x, ...@@ -1187,7 +1190,7 @@ def roi_align(x,
aligned=True, aligned=True,
name=None): name=None):
""" """
This operator implements the roi_align layer. Implementing the roi_align layer.
Region of Interest (RoI) Align operator (also known as RoI Align) is to Region of Interest (RoI) Align operator (also known as RoI Align) is to
perform bilinear interpolation on inputs of nonuniform sizes to obtain perform bilinear interpolation on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7), as described in Mask R-CNN. fixed-size feature maps (e.g. 7*7), as described in Mask R-CNN.
...@@ -1211,31 +1214,31 @@ def roi_align(x, ...@@ -1211,31 +1214,31 @@ def roi_align(x,
the batch, the data type is int32. the batch, the data type is int32.
output_size (int or Tuple[int, int]): The pooled output size(h, w), data output_size (int or Tuple[int, int]): The pooled output size(h, w), data
type is int32. If int, h and w are both equal to output_size. type is int32. If int, h and w are both equal to output_size.
spatial_scale (float32): Multiplicative spatial scale factor to translate spatial_scale (float32, optional): Multiplicative spatial scale factor to translate
ROI coords from their input scale to the scale used when pooling. ROI coords from their input scale to the scale used when pooling.
Default: 1.0 Default: 1.0.
sampling_ratio (int32): number of sampling points in the interpolation sampling_ratio (int32, optional): number of sampling points in the interpolation
grid used to compute the output value of each pooled output bin. grid used to compute the output value of each pooled output bin.
If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling
points per bin are used. points per bin are used.
If <= 0, then an adaptive number of grid points are used (computed If <= 0, then an adaptive number of grid points are used (computed
as ``ceil(roi_width / output_width)``, and likewise for height). as ``ceil(roi_width / output_width)``, and likewise for height).
Default: -1 Default: -1.
aligned (bool): If False, use the legacy implementation. If True, pixel aligned (bool, optional): If False, use the legacy implementation. If True, pixel
shift the box coordinates it by -0.5 for a better alignment with the shift the box coordinates it by -0.5 for a better alignment with the
two neighboring pixel indices. This version is used in Detectron2. two neighboring pixel indices. This version is used in Detectron2.
Default: True Default: True.
name(str, optional): For detailed information, please refer to : name(str, optional): For detailed information, please refer to :
ref:`api_guide_Name`. Usually name is no need to set and None by ref:`api_guide_Name`. Usually name is no need to set and None by
default. default.
Returns: Returns:
Tensor: The output of ROIAlignOp is a 4-D tensor with shape (num_boxes, The output of ROIAlignOp is a 4-D tensor with shape (num_boxes,
channels, pooled_h, pooled_w). The data type is float32 or float64. channels, pooled_h, pooled_w). The data type is float32 or float64.
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example1
import paddle import paddle
from paddle.vision.ops import roi_align from paddle.vision.ops import roi_align
...@@ -1306,12 +1309,12 @@ class RoIAlign(Layer): ...@@ -1306,12 +1309,12 @@ class RoIAlign(Layer):
when pooling. Default: 1.0 when pooling. Default: 1.0
Returns: Returns:
align_out (Tensor): The output of ROIAlign operator is a 4-D tensor with The output of ROIAlign operator is a 4-D tensor with
shape (num_boxes, channels, pooled_h, pooled_w). shape (num_boxes, channels, pooled_h, pooled_w).
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example1
import paddle import paddle
from paddle.vision.ops import RoIAlign from paddle.vision.ops import RoIAlign
......
...@@ -666,8 +666,8 @@ class Normalize(BaseTransform): ...@@ -666,8 +666,8 @@ class Normalize(BaseTransform):
``output[channel] = (input[channel] - mean[channel]) / std[channel]`` ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
Args: Args:
mean (int|float|list|tuple): Sequence of means for each channel. mean (int|float|list|tuple, optional): Sequence of means for each channel.
std (int|float|list|tuple): Sequence of standard deviations for each channel. std (int|float|list|tuple, optional): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'. 'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False. to_rgb (bool, optional): Whether to convert to rgb. Default: False.
...@@ -683,20 +683,21 @@ class Normalize(BaseTransform): ...@@ -683,20 +683,21 @@ class Normalize(BaseTransform):
Examples: Examples:
.. code-block:: python .. code-block:: python
:name: code-example
import numpy as np import paddle
from PIL import Image
from paddle.vision.transforms import Normalize from paddle.vision.transforms import Normalize
normalize = Normalize(mean=[127.5, 127.5, 127.5], normalize = Normalize(mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5],
data_format='HWC') data_format='HWC')
fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)) fake_img = paddle.rand([300,320,3]).numpy() * 255.
fake_img = normalize(fake_img) fake_img = normalize(fake_img)
print(fake_img.shape) print(fake_img.shape)
print(fake_img.max, fake_img.max) # (300, 320, 3)
print(fake_img.max(), fake_img.min())
# 0.99999905 -0.999974
""" """
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册