transforms.py 44.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

38
__all__ = []
L
LielinJiang 已提交
39 40


41 42 43 44 45
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
46 47
    elif F._is_tensor_image(img):
        return img.shape[1:][::-1]  # chw
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
79 80 81 82 83 84
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
85
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
86 87 88 89 90 91 92 93 94

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

95 96
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
97 98 99 100 101 102

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
103
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
104 105 106 107 108 109

    """

    def __init__(self, transforms):
        self.transforms = transforms

110
    def __call__(self, data):
L
LielinJiang 已提交
111 112
        for f in self.transforms:
            try:
113
                data = f(data)
L
LielinJiang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


130 131 132
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
133

134 135 136 137 138 139 140 141 142
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
165 166 167 168 169
    Examples:
    
        .. code-block:: python

            import numpy as np
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
235 236 237

    """

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
271
            outputs.extend(inputs[len(self.keys):])
272 273 274 275 276 277

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
278

279 280
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
281

282 283
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
284

285 286
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
287

288 289
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
290

291 292 293 294

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
295 296 297 298 299 300 301 302 303 304
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
305 306 307 308

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
309
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
310 311
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
312 313 314 315 316 317 318 319
    
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))

            transform = T.ToTensor()

            tensor = transform(fake_img)

    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
354 355 356 357 358 359 360 361
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
377

378 379 380 381 382 383 384
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
385 386 387 388 389
    Examples:
    
        .. code-block:: python

            import numpy as np
390
            from PIL import Image
391
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
392 393 394

            transform = Resize(size=224)

395
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
396 397

            fake_img = transform(fake_img)
398
            print(fake_img.size)
L
LielinJiang 已提交
399 400
    """

401 402
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
403 404 405 406 407
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

408
    def _apply_image(self, img):
L
LielinJiang 已提交
409 410 411
        return F.resize(img, self.size, self.interpolation)


412
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
413 414 415 416 417 418
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
419
        size (int|list|tuple): Target size of output image, with (height, width) shape.
420 421
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
422
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
438

439 440 441 442 443 444 445
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
446 447 448 449 450
    Examples:
    
        .. code-block:: python

            import numpy as np
451
            from PIL import Image
452
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
453 454 455

            transform = RandomResizedCrop(224)

456
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
457 458

            fake_img = transform(fake_img)
459 460
            print(fake_img.size)

L
LielinJiang 已提交
461 462 463
    """

    def __init__(self,
464
                 size,
L
LielinJiang 已提交
465 466
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
467 468 469 470 471
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
472
        else:
473
            self.size = size
L
LielinJiang 已提交
474 475 476 477 478 479
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

480 481
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
482 483 484 485 486 487 488 489 490 491 492
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
493 494 495
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
496 497 498 499 500 501 502 503 504

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
505 506
        else:
            # return whole image
L
LielinJiang 已提交
507 508
            w = width
            h = height
509 510 511
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
512

513 514
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
515

516
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
517 518 519
        return F.resize(cropped_img, self.size, self.interpolation)


520
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
521 522 523
    """Crops the given the input data at the center.

    Args:
524 525 526
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

527 528 529 530 531 532 533
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
534 535 536 537 538
    Examples:
    
        .. code-block:: python

            import numpy as np
539
            from PIL import Image
540
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
541 542 543

            transform = CenterCrop(224)

544
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
545 546

            fake_img = transform(fake_img)
547
            print(fake_img.size)
L
LielinJiang 已提交
548 549
    """

550 551 552 553
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
554
        else:
555
            self.size = size
L
LielinJiang 已提交
556

557 558
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
559 560


561
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
562 563 564
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
565
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
566
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
567

568 569 570 571 572 573 574
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
575 576 577 578 579
    Examples:
    
        .. code-block:: python

            import numpy as np
580
            from PIL import Image
581
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
582

B
Bin Lu 已提交
583
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
584

585
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
586 587

            fake_img = transform(fake_img)
588
            print(fake_img.size)
L
LielinJiang 已提交
589 590
    """

591 592
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
593
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
594 595
        self.prob = prob

596 597 598
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
599 600 601
        return img


602
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
603 604 605
    """Vertically flip the input data randomly with a given probability.

    Args:
606 607
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
608

609 610 611 612 613 614 615
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
616 617 618 619 620
    Examples:
    
        .. code-block:: python

            import numpy as np
621
            from PIL import Image
622
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
623

624
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
625

626
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
627 628

            fake_img = transform(fake_img)
629 630
            print(fake_img.size)

L
LielinJiang 已提交
631 632
    """

633 634
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
635
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
636 637
        self.prob = prob

638 639 640
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
641 642 643
        return img


644
class Normalize(BaseTransform):
L
LielinJiang 已提交
645 646 647 648 649 650
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
651 652
        mean (int|float|list|tuple): Sequence of means for each channel.
        std (int|float|list|tuple): Sequence of standard deviations for each channel.
653 654 655 656
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
657 658 659 660 661 662 663 664

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
665 666 667 668 669
    Examples:
    
        .. code-block:: python

            import numpy as np
670
            from PIL import Image
671
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
672

673 674 675
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
676

677
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
678 679 680

            fake_img = normalize(fake_img)
            print(fake_img.shape)
681
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
682 683 684
    
    """

685 686 687 688 689 690 691
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
692 693 694 695
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
696
            std = [std, std, std]
L
LielinJiang 已提交
697

698 699 700 701
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
702

703 704 705
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
706 707


708 709
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
710 711
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
712
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
713 714

    Args:
715 716
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
717 718 719 720 721 722 723 724 725
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input 
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
726 727 728 729 730
    Examples:
    
        .. code-block:: python

            import numpy as np
731 732
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
733

734
            transform = Transpose()
L
LielinJiang 已提交
735

736
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
737 738 739 740 741 742

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

743 744 745 746 747
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
748 749 750
        if F._is_tensor_image(img):
            return img.transpose(self.order)

751 752
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
753

754 755
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
756
        return img.transpose(self.order)
L
LielinJiang 已提交
757 758


759
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
760 761 762 763 764
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
765
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
766

767 768 769 770 771 772 773
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
774 775 776 777 778
    Examples:
    
        .. code-block:: python

            import numpy as np
779
            from PIL import Image
780
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
781 782 783

            transform = BrightnessTransform(0.4)

784
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
785 786

            fake_img = transform(fake_img)
787
            
L
LielinJiang 已提交
788 789
    """

790 791 792
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
793

794 795
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
796 797
            return img

798 799
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
800 801


802
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
803 804 805 806 807
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
808
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
809

810 811 812 813 814 815 816
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
817 818 819 820 821
    Examples:
    
        .. code-block:: python

            import numpy as np
822
            from PIL import Image
823
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
824 825 826

            transform = ContrastTransform(0.4)

827
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
828 829

            fake_img = transform(fake_img)
830

L
LielinJiang 已提交
831 832
    """

833 834
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
835 836
        if value < 0:
            raise ValueError("contrast value should be non-negative")
837
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
838

839 840
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
841 842
            return img

843 844
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
845 846


847
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
848 849 850 851 852
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
853
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
854

855 856 857 858 859 860 861
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
862 863 864 865 866
    Examples:
    
        .. code-block:: python

            import numpy as np
867
            from PIL import Image
868
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
869 870 871

            transform = SaturationTransform(0.4)

872
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
873 874
        
            fake_img = transform(fake_img)
875

L
LielinJiang 已提交
876 877
    """

878 879 880
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
881

882 883
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
884 885
            return img

886 887
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
888

L
LielinJiang 已提交
889

890
class HueTransform(BaseTransform):
L
LielinJiang 已提交
891 892 893 894 895
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
896
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
897

898 899 900 901 902 903 904
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
905 906 907 908 909
    Examples:
    
        .. code-block:: python

            import numpy as np
910
            from PIL import Image
911
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
912 913 914

            transform = HueTransform(0.4)

915
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
916 917

            fake_img = transform(fake_img)
918

L
LielinJiang 已提交
919 920
    """

921 922 923 924
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
925

926 927
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
928 929
            return img

930 931
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
932 933


934
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
935 936 937
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
938
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
939
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
940
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
941
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
942
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
943
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
944
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
945
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
946
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
947

948 949 950 951 952 953 954
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
955 956 957 958 959
    Examples:
    
        .. code-block:: python

            import numpy as np
960
            from PIL import Image
961
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
962

963
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
964

965
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
966 967

            fake_img = transform(fake_img)
968

L
LielinJiang 已提交
969 970
    """

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
988
        transforms = []
989 990 991 992 993 994 995 996 997 998 999 1000

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1001 1002

        random.shuffle(transforms)
1003
        transform = Compose(transforms)
L
LielinJiang 已提交
1004

1005
        return transform
L
LielinJiang 已提交
1006

1007 1008 1009 1010
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
1032
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1033 1034 1035 1036 1037 1038 1039 1040
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1041 1042 1043 1044 1045
    Examples:
    
        .. code-block:: python

            import numpy as np
1046
            from PIL import Image
1047
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1048 1049 1050

            transform = RandomCrop(224)

1051
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1052 1053

            fake_img = transform(fake_img)
1054
            print(fake_img.size)
L
LielinJiang 已提交
1055 1056
    """

1057 1058 1059 1060 1061 1062 1063 1064
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1065 1066 1067 1068 1069 1070
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1071 1072
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1073

1074
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1075 1076 1077
        """Get parameters for ``crop`` for a random crop.

        Args:
1078
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1079 1080 1081 1082 1083
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1084
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1085 1086 1087 1088
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1089 1090
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1091 1092
        return i, j, th, tw

1093
    def _apply_image(self, img):
L
LielinJiang 已提交
1094 1095
        """
        Args:
1096
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1097

1098 1099
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1100
        """
1101 1102 1103 1104
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1105 1106

        # pad the width if needed
1107 1108 1109
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1110
        # pad the height if needed
1111 1112 1113
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1114

1115
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1116

1117
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1118 1119


1120
class Pad(BaseTransform):
L
LielinJiang 已提交
1121 1122 1123 1124
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1125 1126
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1127 1128
            this is the padding for the left, top, right and bottom borders
            respectively.
1129
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1141
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1142 1143 1144 1145 1146 1147 1148 1149
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1150 1151 1152 1153 1154
    Examples:
    
        .. code-block:: python

            import numpy as np
1155
            from PIL import Image
1156
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1157 1158 1159

            transform = Pad(2)

1160
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1161 1162

            fake_img = transform(fake_img)
1163
            print(fake_img.size)
L
LielinJiang 已提交
1164 1165
    """

1166
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1167 1168 1169
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1170 1171 1172 1173 1174 1175 1176

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1177 1178 1179 1180
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1181
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1182 1183 1184 1185
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1186
    def _apply_image(self, img):
L
LielinJiang 已提交
1187 1188
        """
        Args:
1189 1190
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1191
        Returns:
1192
            PIL Image: Padded image.
L
LielinJiang 已提交
1193 1194 1195 1196
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1197
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1198 1199 1200 1201 1202 1203
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1204
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1205 1206 1207 1208 1209 1210 1211 1212 1213
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1214 1215 1216 1217 1218 1219 1220
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1221
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1222 1223 1224 1225 1226 1227 1228 1229
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1230 1231 1232 1233 1234
    Examples:
    
        .. code-block:: python

            import numpy as np
1235 1236
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1237

1238
            transform = RandomRotation(90)
L
LielinJiang 已提交
1239

1240
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1241 1242

            fake_img = transform(fake_img)
1243
            print(fake_img.size)
L
LielinJiang 已提交
1244 1245
    """

1246 1247
    def __init__(self,
                 degrees,
1248
                 interpolation='nearest',
1249 1250 1251 1252
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1264
        super(RandomRotation, self).__init__(keys)
1265
        self.interpolation = interpolation
L
LielinJiang 已提交
1266 1267
        self.expand = expand
        self.center = center
1268
        self.fill = fill
L
LielinJiang 已提交
1269

1270
    def _get_param(self, degrees):
L
LielinJiang 已提交
1271 1272 1273 1274
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1275
    def _apply_image(self, img):
L
LielinJiang 已提交
1276
        """
1277 1278 1279
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1280
        Returns:
1281
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1282 1283
        """

1284
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1285

1286 1287
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1288 1289


1290
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1291 1292 1293
    """Converts image to grayscale.

    Args:
1294 1295
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1296 1297 1298 1299 1300 1301 1302

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image. 
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1303
    Returns:
1304
        A callable object of Grayscale.
L
LielinJiang 已提交
1305 1306 1307 1308 1309 1310

    Examples:
    
        .. code-block:: python

            import numpy as np
1311
            from PIL import Image
1312
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1313 1314 1315

            transform = Grayscale()

1316
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1317 1318

            fake_img = transform(fake_img)
1319
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1320 1321
    """

1322 1323 1324
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1325

1326
    def _apply_image(self, img):
L
LielinJiang 已提交
1327 1328
        """
        Args:
1329 1330
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1331
        Returns:
1332
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1333
        """
1334
        return F.to_grayscale(img, self.num_output_channels)