Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8dea7bed
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8dea7bed
编写于
7月 22, 2020
作者:
L
LielinJiang
提交者:
GitHub
7月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add some transform apis (#25357)
* add more vision transfrom apis
上级
417b2439
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
653 addition
and
9 deletion
+653
-9
python/paddle/incubate/hapi/tests/test_transforms.py
python/paddle/incubate/hapi/tests/test_transforms.py
+103
-0
python/paddle/incubate/hapi/vision/transforms/functional.py
python/paddle/incubate/hapi/vision/transforms/functional.py
+202
-1
python/paddle/incubate/hapi/vision/transforms/transforms.py
python/paddle/incubate/hapi/vision/transforms/transforms.py
+348
-8
未找到文件。
python/paddle/incubate/hapi/tests/test_transforms.py
浏览文件 @
8dea7bed
...
...
@@ -23,6 +23,7 @@ import numpy as np
from
paddle.incubate.hapi.datasets
import
DatasetFolder
from
paddle.incubate.hapi.vision.transforms
import
transforms
import
paddle.incubate.hapi.vision.transforms.functional
as
F
class
TestTransforms
(
unittest
.
TestCase
):
...
...
@@ -100,6 +101,78 @@ class TestTransforms(unittest.TestCase):
])
self
.
do_transform
(
trans
)
def
test_rotate
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomRotate
(
90
),
transforms
.
RandomRotate
([
-
10
,
10
]),
transforms
.
RandomRotate
(
45
,
expand
=
True
),
transforms
.
RandomRotate
(
10
,
expand
=
True
,
center
=
(
60
,
80
)),
])
self
.
do_transform
(
trans
)
def
test_pad
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Pad
(
2
)])
self
.
do_transform
(
trans
)
fake_img
=
np
.
random
.
rand
(
200
,
150
,
3
).
astype
(
'float32'
)
trans_pad
=
transforms
.
Pad
(
10
)
fake_img_padded
=
trans_pad
(
fake_img
)
np
.
testing
.
assert_equal
(
fake_img_padded
.
shape
,
(
220
,
170
,
3
))
trans_pad1
=
transforms
.
Pad
([
1
,
2
])
trans_pad2
=
transforms
.
Pad
([
1
,
2
,
3
,
4
])
img
=
trans_pad1
(
fake_img
)
img
=
trans_pad2
(
img
)
def
test_erase
(
self
):
trans
=
transforms
.
Compose
(
[
transforms
.
RandomErasing
(),
transforms
.
RandomErasing
(
value
=
0.0
)])
self
.
do_transform
(
trans
)
def
test_random_crop
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
200
),
transforms
.
RandomCrop
((
140
,
160
)),
])
self
.
do_transform
(
trans
)
trans_random_crop1
=
transforms
.
RandomCrop
(
224
)
trans_random_crop2
=
transforms
.
RandomCrop
((
140
,
160
))
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img_crop1
=
trans_random_crop1
(
fake_img
)
fake_img_crop2
=
trans_random_crop2
(
fake_img_crop1
)
np
.
testing
.
assert_equal
(
fake_img_crop1
.
shape
,
(
224
,
224
,
3
))
np
.
testing
.
assert_equal
(
fake_img_crop2
.
shape
,
(
140
,
160
,
3
))
trans_random_crop_same
=
transforms
.
RandomCrop
((
140
,
160
))
img
=
trans_random_crop_same
(
fake_img_crop2
)
trans_random_crop_bigger
=
transforms
.
RandomCrop
((
180
,
200
))
img
=
trans_random_crop_bigger
(
img
)
trans_random_crop_pad
=
transforms
.
RandomCrop
((
224
,
256
),
2
,
True
)
img
=
trans_random_crop_pad
(
img
)
def
test_grayscale
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Grayscale
()])
self
.
do_transform
(
trans
)
trans_gray
=
transforms
.
Grayscale
()
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img_gray
=
trans_gray
(
fake_img
)
np
.
testing
.
assert_equal
(
len
(
fake_img_gray
.
shape
),
2
)
np
.
testing
.
assert_equal
(
fake_img_gray
.
shape
[
0
],
500
)
np
.
testing
.
assert_equal
(
fake_img_gray
.
shape
[
1
],
400
)
trans_gray3
=
transforms
.
Grayscale
(
3
)
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img_gray
=
trans_gray3
(
fake_img
)
def
test_exception
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Resize
(
-
1
)])
...
...
@@ -123,6 +196,36 @@ class TestTransforms(unittest.TestCase):
with
self
.
assertRaises
(
ValueError
):
transforms
.
BrightnessTransform
(
-
1.0
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
Pad
([
1.0
,
2.0
,
3.0
])
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
F
.
pad
(
fake_img
,
'1'
)
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
F
.
pad
(
fake_img
,
1
,
{})
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
F
.
pad
(
fake_img
,
1
,
padding_mode
=-
1
)
with
self
.
assertRaises
(
ValueError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
F
.
pad
(
fake_img
,
[
1.0
,
2.0
,
3.0
])
with
self
.
assertRaises
(
ValueError
):
transforms
.
RandomRotate
(
-
2
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
RandomRotate
([
1
,
2
,
3
])
with
self
.
assertRaises
(
ValueError
):
trans_gray
=
transforms
.
Grayscale
(
5
)
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
trans_gray
(
fake_img
)
def
test_info
(
self
):
str
(
transforms
.
Compose
([
transforms
.
Resize
((
224
,
224
))]))
str
(
transforms
.
BatchCompose
([
transforms
.
Resize
((
224
,
224
))]))
...
...
python/paddle/incubate/hapi/vision/transforms/functional.py
浏览文件 @
8dea7bed
...
...
@@ -15,8 +15,10 @@
import
sys
import
collections
import
random
import
math
import
cv2
import
numbers
import
numpy
as
np
if
sys
.
version_info
<
(
3
,
3
):
...
...
@@ -26,7 +28,7 @@ else:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
__all__
=
[
'flip'
,
'resize'
]
__all__
=
[
'flip'
,
'resize'
,
'pad'
,
'rotate'
,
'to_grayscale'
]
def
flip
(
image
,
code
):
...
...
@@ -99,3 +101,202 @@ def resize(img, size, interpolation=cv2.INTER_LINEAR):
return
cv2
.
resize
(
img
,
(
ow
,
oh
),
interpolation
=
interpolation
)
else
:
return
cv2
.
resize
(
img
,
size
[::
-
1
],
interpolation
=
interpolation
)
def
pad
(
img
,
padding
,
fill
=
(
0
,
0
,
0
),
padding_mode
=
'constant'
):
"""Pads the given CV Image on all sides with speficified padding mode and fill value.
Args:
img (np.ndarray): Image to be padded.
padding (int|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (int|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
``constant`` means padding with a constant value, this value is specified with fill.
``edge`` means padding with the last value at the edge of the image.
``reflect`` means padding with reflection of image (without repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
Returns:
numpy ndarray: Padded image.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import pad
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = pad(fake_img, 2)
print(fake_img.shape)
"""
if
not
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate padding arg'
)
if
not
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate fill arg'
)
if
not
isinstance
(
padding_mode
,
str
):
raise
TypeError
(
'Got inappropriate padding_mode arg'
)
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
],
\
'Expected padding mode be either constant, edge, reflect or symmetric, but got {}'
.
format
(
padding_mode
)
PAD_MOD
=
{
'constant'
:
cv2
.
BORDER_CONSTANT
,
'edge'
:
cv2
.
BORDER_REPLICATE
,
'reflect'
:
cv2
.
BORDER_DEFAULT
,
'symmetric'
:
cv2
.
BORDER_REFLECT
}
if
isinstance
(
padding
,
int
):
pad_left
=
pad_right
=
pad_top
=
pad_bottom
=
padding
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
==
2
:
pad_left
=
pad_right
=
padding
[
0
]
pad_top
=
pad_bottom
=
padding
[
1
]
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
==
4
:
pad_left
,
pad_top
,
pad_right
,
pad_bottom
=
padding
if
isinstance
(
fill
,
numbers
.
Number
):
fill
=
(
fill
,
)
*
(
2
*
len
(
img
.
shape
)
-
3
)
if
padding_mode
==
'constant'
:
assert
(
len
(
fill
)
==
3
and
len
(
img
.
shape
)
==
3
)
or
(
len
(
fill
)
==
1
and
len
(
img
.
shape
)
==
2
),
\
'channel of image is {} but length of fill is {}'
.
format
(
img
.
shape
[
-
1
],
len
(
fill
))
img
=
cv2
.
copyMakeBorder
(
src
=
img
,
top
=
pad_top
,
bottom
=
pad_bottom
,
left
=
pad_left
,
right
=
pad_right
,
borderType
=
PAD_MOD
[
padding_mode
],
value
=
fill
)
return
img
def
rotate
(
img
,
angle
,
interpolation
=
cv2
.
INTER_LINEAR
,
expand
=
False
,
center
=
None
):
"""Rotates the image by angle.
Args:
img (numpy.ndarray): Image to be rotated.
angle (float|int): In degrees clockwise order.
interpolation (int, optional):
interpolation: Interpolation method.
expand (bool|optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple|optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
Returns:
numpy ndarray: Rotated image.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import rotate
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = rotate(fake_img, 10)
print(fake_img.shape)
"""
dtype
=
img
.
dtype
h
,
w
,
_
=
img
.
shape
point
=
center
or
(
w
/
2
,
h
/
2
)
M
=
cv2
.
getRotationMatrix2D
(
point
,
angle
=-
angle
,
scale
=
1
)
if
expand
:
if
center
is
None
:
cos
=
np
.
abs
(
M
[
0
,
0
])
sin
=
np
.
abs
(
M
[
0
,
1
])
nW
=
int
((
h
*
sin
)
+
(
w
*
cos
))
nH
=
int
((
h
*
cos
)
+
(
w
*
sin
))
M
[
0
,
2
]
+=
(
nW
/
2
)
-
point
[
0
]
M
[
1
,
2
]
+=
(
nH
/
2
)
-
point
[
1
]
dst
=
cv2
.
warpAffine
(
img
,
M
,
(
nW
,
nH
))
else
:
xx
=
[]
yy
=
[]
for
point
in
(
np
.
array
([
0
,
0
,
1
]),
np
.
array
([
w
-
1
,
0
,
1
]),
np
.
array
([
w
-
1
,
h
-
1
,
1
]),
np
.
array
([
0
,
h
-
1
,
1
])):
target
=
np
.
dot
(
M
,
point
)
xx
.
append
(
target
[
0
])
yy
.
append
(
target
[
1
])
nh
=
int
(
math
.
ceil
(
max
(
yy
))
-
math
.
floor
(
min
(
yy
)))
nw
=
int
(
math
.
ceil
(
max
(
xx
))
-
math
.
floor
(
min
(
xx
)))
M
[
0
,
2
]
+=
(
nw
-
w
)
/
2
M
[
1
,
2
]
+=
(
nh
-
h
)
/
2
dst
=
cv2
.
warpAffine
(
img
,
M
,
(
nw
,
nh
),
flags
=
interpolation
)
else
:
dst
=
cv2
.
warpAffine
(
img
,
M
,
(
w
,
h
),
flags
=
interpolation
)
return
dst
.
astype
(
dtype
)
def
to_grayscale
(
img
,
num_output_channels
=
1
):
"""Converts image to grayscale version of image.
Args:
img (numpy.ndarray): Image to be converted to grayscale.
Returns:
numpy.ndarray: Grayscale version of the image.
if num_output_channels == 1, returned image is single channel
if num_output_channels == 3, returned image is 3 channel with r == g == b
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import to_grayscale
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = to_grayscale(fake_img)
print(fake_img.shape)
"""
if
num_output_channels
==
1
:
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
)
elif
num_output_channels
==
3
:
img
=
cv2
.
cvtColor
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
),
cv2
.
COLOR_GRAY2RGB
)
else
:
raise
ValueError
(
'num_output_channels should be either 1 or 3'
)
return
img
python/paddle/incubate/hapi/vision/transforms/transforms.py
浏览文件 @
8dea7bed
...
...
@@ -52,6 +52,11 @@ __all__ = [
"ContrastTransform"
,
"HueTransform"
,
"ColorJitter"
,
"RandomCrop"
,
"RandomErasing"
,
"Pad"
,
"RandomRotate"
,
"Grayscale"
,
]
...
...
@@ -756,17 +761,13 @@ class ColorJitter(object):
Args:
brightness: How much to jitter brightness.
Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
contrast: How much to jitter contrast.
Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
saturation: How much to jitter saturation.
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
hue: How much to jitter hue.
Chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
Examples:
...
...
@@ -800,3 +801,342 @@ class ColorJitter(object):
def
__call__
(
self
,
img
):
return
self
.
transforms
(
img
)
class
RandomCrop
(
object
):
"""Crops the given CV Image at a random location.
Args:
size (sequence|int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int|sequence|optional): Optional padding on each border
of the image. If a sequence of length 4 is provided, it is used to pad left,
top, right, bottom borders respectively. Default: 0.
pad_if_needed (boolean|optional): It will pad the image if smaller than the
desired size to avoid raising an exception. Default: False.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomCrop
transform = RandomCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
size
,
padding
=
0
,
pad_if_needed
=
False
):
if
isinstance
(
size
,
numbers
.
Number
):
self
.
size
=
(
int
(
size
),
int
(
size
))
else
:
self
.
size
=
size
self
.
padding
=
padding
self
.
pad_if_needed
=
pad_if_needed
def
_get_params
(
self
,
img
,
output_size
):
"""Get parameters for ``crop`` for a random crop.
Args:
img (numpy.ndarray): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
h
,
w
,
_
=
img
.
shape
th
,
tw
=
output_size
if
w
==
tw
and
h
==
th
:
return
0
,
0
,
h
,
w
try
:
i
=
random
.
randint
(
0
,
h
-
th
)
except
ValueError
:
i
=
random
.
randint
(
h
-
th
,
0
)
try
:
j
=
random
.
randint
(
0
,
w
-
tw
)
except
ValueError
:
j
=
random
.
randint
(
w
-
tw
,
0
)
return
i
,
j
,
th
,
tw
def
__call__
(
self
,
img
):
"""
Args:
img (numpy.ndarray): Image to be cropped.
Returns:
numpy.ndarray: Cropped image.
"""
if
self
.
padding
>
0
:
img
=
F
.
pad
(
img
,
self
.
padding
)
# pad the width if needed
if
self
.
pad_if_needed
and
img
.
shape
[
1
]
<
self
.
size
[
1
]:
img
=
F
.
pad
(
img
,
(
int
((
1
+
self
.
size
[
1
]
-
img
.
shape
[
1
])
/
2
),
0
))
# pad the height if needed
if
self
.
pad_if_needed
and
img
.
shape
[
0
]
<
self
.
size
[
0
]:
img
=
F
.
pad
(
img
,
(
0
,
int
((
1
+
self
.
size
[
0
]
-
img
.
shape
[
0
])
/
2
)))
i
,
j
,
h
,
w
=
self
.
_get_params
(
img
,
self
.
size
)
return
img
[
i
:
i
+
h
,
j
:
j
+
w
]
class
RandomErasing
(
object
):
"""Randomly selects a rectangle region in an image and erases its pixels.
``Random Erasing Data Augmentation`` by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
prob (float): probability that the random erasing operation will be performed.
scale (tuple): range of proportion of erased area against input image. Should be (min, max).
ratio (float): range of aspect ratio of erased area.
value (float|list|tuple): erasing value. If a single int, it is used to
erase all pixels. If a tuple of length 3, it is used to erase
R, G, B channels respectively. Default: 0.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomCrop
transform = RandomCrop(224)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
prob
=
0.5
,
scale
=
(
0.02
,
0.4
),
ratio
=
0.3
,
value
=
[
0.
,
0.
,
0.
]):
assert
isinstance
(
value
,
(
float
,
Sequence
)),
"Expected type of value in [float, list, tupue], but got {}"
.
format
(
type
(
value
))
assert
scale
[
0
]
<=
scale
[
1
],
"scale range should be of kind (min, max)!"
if
isinstance
(
value
,
float
):
self
.
value
=
[
value
,
value
,
value
]
else
:
self
.
value
=
value
self
.
p
=
prob
self
.
scale
=
scale
self
.
ratio
=
ratio
def
__call__
(
self
,
img
):
if
random
.
uniform
(
0
,
1
)
>
self
.
p
:
return
img
for
_
in
range
(
100
):
area
=
img
.
shape
[
0
]
*
img
.
shape
[
1
]
target_area
=
random
.
uniform
(
self
.
scale
[
0
],
self
.
scale
[
1
])
*
area
aspect_ratio
=
random
.
uniform
(
self
.
ratio
,
1
/
self
.
ratio
)
h
=
int
(
round
(
math
.
sqrt
(
target_area
*
aspect_ratio
)))
w
=
int
(
round
(
math
.
sqrt
(
target_area
/
aspect_ratio
)))
if
w
<
img
.
shape
[
1
]
and
h
<
img
.
shape
[
0
]:
x1
=
random
.
randint
(
0
,
img
.
shape
[
0
]
-
h
)
y1
=
random
.
randint
(
0
,
img
.
shape
[
1
]
-
w
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
3
:
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
,
0
]
=
self
.
value
[
0
]
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
,
1
]
=
self
.
value
[
1
]
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
,
2
]
=
self
.
value
[
2
]
else
:
img
[
x1
:
x1
+
h
,
y1
:
y1
+
w
]
=
self
.
value
[
1
]
return
img
return
img
class
Pad
(
object
):
"""Pads the given CV Image on all sides with the given "pad" value.
Args:
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
``constant`` means pads with a constant value, this value is specified with fill.
``edge`` means pads with the last value at the edge of the image.
``reflect`` means pads with reflection of image (without repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import Pad
transform = Pad(2)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
assert
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
))
assert
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
]
if
isinstance
(
padding
,
collections
.
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
self
.
padding
=
padding
self
.
fill
=
fill
self
.
padding_mode
=
padding_mode
def
__call__
(
self
,
img
):
"""
Args:
img (numpy.ndarray): Image to be padded.
Returns:
numpy.ndarray: Padded image.
"""
return
F
.
pad
(
img
,
self
.
padding
,
self
.
fill
,
self
.
padding_mode
)
class
RandomRotate
(
object
):
"""Rotates the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees) clockwise order.
interpolation (int|optional): Interpolation mode of resize. Default: cv2.INTER_LINEAR.
expand (bool|optional): Optional expansion flag. Default: False.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple|optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomRotate
transform = RandomRotate(90)
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
degrees
,
interpolation
=
cv2
.
INTER_LINEAR
,
expand
=
False
,
center
=
None
):
if
isinstance
(
degrees
,
numbers
.
Number
):
if
degrees
<
0
:
raise
ValueError
(
"If degrees is a single number, it must be positive."
)
self
.
degrees
=
(
-
degrees
,
degrees
)
else
:
if
len
(
degrees
)
!=
2
:
raise
ValueError
(
"If degrees is a sequence, it must be of len 2."
)
self
.
degrees
=
degrees
self
.
interpolation
=
interpolation
self
.
expand
=
expand
self
.
center
=
center
def
_get_params
(
self
,
degrees
):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
sequence: params to be passed to ``rotate`` for random rotation.
"""
angle
=
random
.
uniform
(
degrees
[
0
],
degrees
[
1
])
return
angle
def
__call__
(
self
,
img
):
"""
img (np.ndarray): Image to be rotated.
Returns:
np.ndarray: Rotated image.
"""
angle
=
self
.
_get_params
(
self
.
degrees
)
return
F
.
rotate
(
img
,
angle
,
self
.
interpolation
,
self
.
expand
,
self
.
center
)
class
Grayscale
(
object
):
"""Converts image to grayscale.
Args:
output_channels (int): (1 or 3) number of channels desired for output image
Returns:
CV Image: Grayscale version of the input.
- If output_channels == 1 : returned image is single channel
- If output_channels == 3 : returned image is 3 channel with r == g == b
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import Grayscale
transform = Grayscale()
fake_img = np.random.rand(500, 400, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
output_channels
=
1
):
self
.
output_channels
=
output_channels
def
__call__
(
self
,
img
):
"""
Args:
img (numpy.ndarray): Image to be converted to grayscale.
Returns:
numpy.ndarray: Randomly grayscaled image.
"""
return
F
.
to_grayscale
(
img
,
num_output_channels
=
self
.
output_channels
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录