# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import sys import random import numpy as np import numbers import collections import traceback import paddle from . import functional as F if sys.version_info < (3, 3): Sequence = collections.Sequence Iterable = collections.Iterable else: Sequence = collections.abc.Sequence Iterable = collections.abc.Iterable __all__ = [] def _get_image_size(img): if F._is_pil_image(img): return img.size elif F._is_numpy_image(img): return img.shape[:2][::-1] elif F._is_tensor_image(img): if len(img.shape) == 3: return img.shape[1:][::-1] # chw -> wh elif len(img.shape) == 4: return img.shape[2:][::-1] # nchw -> wh else: raise ValueError( "The dim for input Tensor should be 3-D or 4-D, but received {}".format( len(img.shape) ) ) else: raise TypeError("Unexpected type {}".format(type(img))) def _check_input( value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True ): if isinstance(value, numbers.Number): if value < 0: raise ValueError( "If {} is a single number, it must be non negative.".format( name ) ) value = [center - value, center + value] if clip_first_on_zero: value[0] = max(value[0], 0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bound[0] <= value[0] <= value[1] <= bound[1]: raise ValueError( "{} values should be between {}".format(name, bound) ) else: raise TypeError( "{} should be a single number or a list/tuple with lenght 2.".format( name ) ) if value[0] == value[1] == center: value = None return value class Compose: """ Composes several transforms together use for composing list of transforms together for a dataset transform. Args: transforms (list|tuple): List/Tuple of transforms to compose. Returns: A compose object which is callable, __call__ for this Compose object will call each given :attr:`transforms` sequencely. Examples: .. code-block:: python from paddle.vision.datasets import Flowers from paddle.vision.transforms import Compose, ColorJitter, Resize transform = Compose([ColorJitter(), Resize(size=608)]) flowers = Flowers(mode='test', transform=transform) for i in range(10): sample = flowers[i] print(sample[0].size, sample[1]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, data): for f in self.transforms: try: data = f(data) except Exception as e: stack_info = traceback.format_exc() print( "fail to perform transform [{}] with error: " "{} and stack:\n{}".format(f, e, str(stack_info)) ) raise e return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class BaseTransform: """ Base class of all transforms used in computer vision. calling logic: if keys is None: _get_params -> _apply_image() else: _get_params -> _apply_*() for * in keys If you want to implement a self-defined transform method for image, rewrite _apply_* method in subclass. Args: keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures, key is used to specify the type of input. For example, if your input is image type, then the key can be None or ("image"). if your input is (image, image) type, then the keys should be ("image", "image"). if your input is (image, boxes), then the keys should be ("image", "boxes"). Current available strings & data type are describe below: - "image": input image, with shape of (H, W, C) - "coords": coordinates, with shape of (N, 2) - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, the 1st "xy" represents top left point of a box, the 2nd "xy" represents right bottom point. - "mask": map used for segmentation, with shape of (H, W, 1) You can also customize your data types only if you implement the corresponding _apply_*() methods, otherwise ``NotImplementedError`` will be raised. Examples: .. code-block:: python import numpy as np from PIL import Image import paddle.vision.transforms.functional as F from paddle.vision.transforms import BaseTransform def _get_image_size(img): if F._is_pil_image(img): return img.size elif F._is_numpy_image(img): return img.shape[:2][::-1] else: raise TypeError("Unexpected type {}".format(type(img))) class CustomRandomFlip(BaseTransform): def __init__(self, prob=0.5, keys=None): super().__init__(keys) self.prob = prob def _get_params(self, inputs): image = inputs[self.keys.index('image')] params = {} params['flip'] = np.random.random() < self.prob params['size'] = _get_image_size(image) return params def _apply_image(self, image): if self.params['flip']: return F.hflip(image) return image # if you only want to transform image, do not need to rewrite this function def _apply_coords(self, coords): if self.params['flip']: w = self.params['size'][0] coords[:, 0] = w - coords[:, 0] return coords # if you only want to transform image, do not need to rewrite this function def _apply_boxes(self, boxes): idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten() coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2) coords = self._apply_coords(coords).reshape((-1, 4, 2)) minxy = coords.min(axis=1) maxxy = coords.max(axis=1) trans_boxes = np.concatenate((minxy, maxxy), axis=1) return trans_boxes # if you only want to transform image, do not need to rewrite this function def _apply_mask(self, mask): if self.params['flip']: return F.hflip(mask) return mask # create fake inputs fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8')) fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]]) fake_mask = fake_img.convert('L') # only transform for image: flip_transform = CustomRandomFlip(1.0) converted_img = flip_transform(fake_img) # transform for image, boxes and mask flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask')) (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask)) print('converted boxes', converted_boxes) """ def __init__(self, keys=None): if keys is None: keys = ("image",) elif not isinstance(keys, Sequence): raise ValueError( "keys should be a sequence, but got keys={}".format(keys) ) for k in keys: if self._get_apply(k) is None: raise NotImplementedError( "{} is unsupported data structure".format(k) ) self.keys = keys # storage some params get from function get_params() self.params = None def _get_params(self, inputs): pass def __call__(self, inputs): """Apply transform on single input data""" if not isinstance(inputs, tuple): inputs = (inputs,) self.params = self._get_params(inputs) outputs = [] for i in range(min(len(inputs), len(self.keys))): apply_func = self._get_apply(self.keys[i]) if apply_func is None: outputs.append(inputs[i]) else: outputs.append(apply_func(inputs[i])) if len(inputs) > len(self.keys): outputs.extend(inputs[len(self.keys) :]) if len(outputs) == 1: outputs = outputs[0] else: outputs = tuple(outputs) return outputs def _get_apply(self, key): return getattr(self, "_apply_{}".format(key), None) def _apply_image(self, image): raise NotImplementedError def _apply_boxes(self, boxes): raise NotImplementedError def _apply_mask(self, mask): raise NotImplementedError class ToTensor(BaseTransform): """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``. Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W). If input is a grayscale image (H x W), it will be converted to an image of shape (H x W x 1). And the shape of output tensor will be (1 x H x W). If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` . Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. In the other cases, tensors are returned without scaling. Args: data_format (str, optional): Data format of output tensor, should be 'HWC' or 'CHW'. Default: 'CHW'. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray): The input image with shape (H x W x C). - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format. Returns: A callable object of ToTensor. Examples: .. code-block:: python import numpy as np from PIL import Image import paddle.vision.transforms as T import paddle.vision.transforms.functional as F fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8)) transform = T.ToTensor() tensor = transform(fake_img) print(tensor.shape) # [3, 4, 5] print(tensor.dtype) # paddle.float32 """ def __init__(self, data_format='CHW', keys=None): super().__init__(keys) self.data_format = data_format def _apply_image(self, img): """ Args: img (PIL.Image|np.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ return F.to_tensor(img, self.data_format) class Resize(BaseTransform): """Resize the input Image to the given size. Args: size (int|list|tuple): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, support method are as following: - "nearest": Image.NEAREST, - "bilinear": Image.BILINEAR, - "bicubic": Image.BICUBIC, - "box": Image.BOX, - "lanczos": Image.LANCZOS, - "hamming": Image.HAMMING when use cv2 backend, support method are as following: - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "area": cv2.INTER_AREA, - "bicubic": cv2.INTER_CUBIC, - "lanczos": cv2.INTER_LANCZOS4 keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image. Returns: A callable object of Resize. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import Resize fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8)) transform = Resize(size=224) converted_img = transform(fake_img) print(converted_img.size) # (262, 224) transform = Resize(size=(200,150)) converted_img = transform(fake_img) print(converted_img.size) # (150, 200) """ def __init__(self, size, interpolation='bilinear', keys=None): super().__init__(keys) assert isinstance(size, int) or ( isinstance(size, Iterable) and len(size) == 2 ) self.size = size self.interpolation = interpolation def _apply_image(self, img): return F.resize(img, self.size, self.interpolation) class RandomResizedCrop(BaseTransform): """Crop the input data to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. After applying crop transfrom, the input data will be resized to given size. Args: size (int|list|tuple): Target size of output image, with (height, width) shape. scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin image. Default: (0.08, 1.0) ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, support method are as following: - "nearest": Image.NEAREST, - "bilinear": Image.BILINEAR, - "bicubic": Image.BICUBIC, - "box": Image.BOX, - "lanczos": Image.LANCZOS, - "hamming": Image.HAMMING when use cv2 backend, support method are as following: - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "area": cv2.INTER_AREA, - "bicubic": cv2.INTER_CUBIC, - "lanczos": cv2.INTER_LANCZOS4 keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image. Returns: A callable object of RandomResizedCrop. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import RandomResizedCrop transform = RandomResizedCrop(224) fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) """ def __init__( self, size, scale=(0.08, 1.0), ratio=(3.0 / 4, 4.0 / 3), interpolation='bilinear', keys=None, ): super().__init__(keys) if isinstance(size, int): self.size = (size, size) else: self.size = size assert scale[0] <= scale[1], "scale should be of kind (min, max)" assert ratio[0] <= ratio[1], "ratio should be of kind (min, max)" self.scale = scale self.ratio = ratio self.interpolation = interpolation def _get_param(self, image, attempts=10): width, height = _get_image_size(image) area = height * width for _ in range(attempts): target_area = np.random.uniform(*self.scale) * area log_ratio = tuple(math.log(x) for x in self.ratio) aspect_ratio = math.exp(np.random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = random.randint(0, height - h) j = random.randint(0, width - w) return i, j, h, w # Fallback to central crop in_ratio = float(width) / float(height) if in_ratio < min(self.ratio): w = width h = int(round(w / min(self.ratio))) elif in_ratio > max(self.ratio): h = height w = int(round(h * max(self.ratio))) else: # return whole image w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w def _apply_image(self, img): i, j, h, w = self._get_param(img) cropped_img = F.crop(img, i, j, h, w) return F.resize(cropped_img, self.size, self.interpolation) class CenterCrop(BaseTransform): """Crops the given the input data at the center. Args: size (int|list|tuple): Target size of output image, with (height, width) shape. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image. Returns: A callable object of CenterCrop. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import CenterCrop transform = CenterCrop(224) fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) """ def __init__(self, size, keys=None): super().__init__(keys) if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def _apply_image(self, img): return F.center_crop(img, self.size) class RandomHorizontalFlip(BaseTransform): """Horizontally flip the input data randomly with a given probability. Args: prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5 keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image. Returns: A callable object of RandomHorizontalFlip. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import RandomHorizontalFlip transform = RandomHorizontalFlip(0.5) fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) """ def __init__(self, prob=0.5, keys=None): super().__init__(keys) assert 0 <= prob <= 1, "probability must be between 0 and 1" self.prob = prob def _apply_image(self, img): if random.random() < self.prob: return F.hflip(img) return img class RandomVerticalFlip(BaseTransform): """Vertically flip the input data randomly with a given probability. Args: prob (float, optional): Probability of the input data being flipped. Default: 0.5 keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image. Returns: A callable object of RandomVerticalFlip. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import RandomVerticalFlip transform = RandomVerticalFlip() fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) """ def __init__(self, prob=0.5, keys=None): super().__init__(keys) assert 0 <= prob <= 1, "probability must be between 0 and 1" self.prob = prob def _apply_image(self, img): if random.random() < self.prob: return F.vflip(img) return img class Normalize(BaseTransform): """Normalize the input data with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform will normalize each channel of the input data. ``output[channel] = (input[channel] - mean[channel]) / std[channel]`` Args: mean (int|float|list|tuple, optional): Sequence of means for each channel. std (int|float|list|tuple, optional): Sequence of standard deviations for each channel. data_format (str, optional): Data format of img, should be 'HWC' or 'CHW'. Default: 'CHW'. to_rgb (bool, optional): Whether to convert to rgb. Default: False. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor. Returns: A callable object of Normalize. Examples: .. code-block:: python :name: code-example import paddle from paddle.vision.transforms import Normalize normalize = Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], data_format='HWC') fake_img = paddle.rand([300,320,3]).numpy() * 255. fake_img = normalize(fake_img) print(fake_img.shape) # (300, 320, 3) print(fake_img.max(), fake_img.min()) # 0.99999905 -0.999974 """ def __init__( self, mean=0.0, std=1.0, data_format='CHW', to_rgb=False, keys=None ): super().__init__(keys) if isinstance(mean, numbers.Number): mean = [mean, mean, mean] if isinstance(std, numbers.Number): std = [std, std, std] self.mean = mean self.std = std self.data_format = data_format self.to_rgb = to_rgb def _apply_image(self, img): return F.normalize( img, self.mean, self.std, self.data_format, self.to_rgb ) class Transpose(BaseTransform): """Transpose input data to a target format. For example, most transforms use HWC mode image, while the Neural Network might use CHW mode input tensor. output image will be an instance of numpy.ndarray. Args: order (list|tuple, optional): Target order of input data. Default: (2, 0, 1). keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input is a PIL.Image, output will be converted to np.ndarray automatically. Returns: A callable object of Transpose. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import Transpose transform = Transpose() fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, order=(2, 0, 1), keys=None): super().__init__(keys) self.order = order def _apply_image(self, img): if F._is_tensor_image(img): return img.transpose(self.order) if F._is_pil_image(img): img = np.asarray(img) if len(img.shape) == 2: img = img[..., np.newaxis] return img.transpose(self.order) class BrightnessTransform(BaseTransform): """Adjust brightness of the image. Args: value (float): How much to adjust the brightness. Can be any non negative number. 0 gives the original image keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness. Returns: A callable object of BrightnessTransform. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import BrightnessTransform transform = BrightnessTransform(0.4) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) """ def __init__(self, value, keys=None): super().__init__(keys) self.value = _check_input(value, 'brightness') def _apply_image(self, img): if self.value is None: return img brightness_factor = random.uniform(self.value[0], self.value[1]) return F.adjust_brightness(img, brightness_factor) class ContrastTransform(BaseTransform): """Adjust contrast of the image. Args: value (float): How much to adjust the contrast. Can be any non negative number. 0 gives the original image keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast. Returns: A callable object of ContrastTransform. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import ContrastTransform transform = ContrastTransform(0.4) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) """ def __init__(self, value, keys=None): super().__init__(keys) if value < 0: raise ValueError("contrast value should be non-negative") self.value = _check_input(value, 'contrast') def _apply_image(self, img): if self.value is None: return img contrast_factor = random.uniform(self.value[0], self.value[1]) return F.adjust_contrast(img, contrast_factor) class SaturationTransform(BaseTransform): """Adjust saturation of the image. Args: value (float): How much to adjust the saturation. Can be any non negative number. 0 gives the original image keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation. Returns: A callable object of SaturationTransform. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import SaturationTransform transform = SaturationTransform(0.4) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) """ def __init__(self, value, keys=None): super().__init__(keys) self.value = _check_input(value, 'saturation') def _apply_image(self, img): if self.value is None: return img saturation_factor = random.uniform(self.value[0], self.value[1]) return F.adjust_saturation(img, saturation_factor) class HueTransform(BaseTransform): """Adjust hue of the image. Args: value (float): How much to adjust the hue. Can be any number between 0 and 0.5, 0 gives the original image keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue. Returns: A callable object of HueTransform. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import HueTransform transform = HueTransform(0.4) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) """ def __init__(self, value, keys=None): super().__init__(keys) self.value = _check_input( value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False ) def _apply_image(self, img): if self.value is None: return img hue_factor = random.uniform(self.value[0], self.value[1]) return F.adjust_hue(img, hue_factor) class ColorJitter(BaseTransform): """Randomly change the brightness, contrast, saturation and hue of an image. Args: brightness (float): How much to jitter brightness. Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers. contrast (float): How much to jitter contrast. Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers. saturation (float): How much to jitter saturation. Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers. hue (float): How much to jitter hue. Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image. Returns: A callable object of ColorJitter. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import ColorJitter transform = ColorJitter(0.4, 0.4, 0.4, 0.4) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) """ def __init__( self, brightness=0, contrast=0, saturation=0, hue=0, keys=None ): super().__init__(keys) self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def _get_param(self, brightness, contrast, saturation, hue): """Get a randomized transform to be applied on image. Arguments are same as that of __init__. Returns: Transform which randomly adjusts brightness, contrast and saturation in a random order. """ transforms = [] if brightness is not None: transforms.append(BrightnessTransform(brightness, self.keys)) if contrast is not None: transforms.append(ContrastTransform(contrast, self.keys)) if saturation is not None: transforms.append(SaturationTransform(saturation, self.keys)) if hue is not None: transforms.append(HueTransform(hue, self.keys)) random.shuffle(transforms) transform = Compose(transforms) return transform def _apply_image(self, img): """ Args: img (PIL Image): Input image. Returns: PIL Image: Color jittered image. """ transform = self._get_param( self.brightness, self.contrast, self.saturation, self.hue ) return transform(img) class RandomCrop(BaseTransform): """Crops the given CV Image at a random location. Args: size (sequence|int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. padding (int|sequence, optional): Optional padding on each border of the image. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. Default: None, without padding. pad_if_needed (boolean, optional): It will pad the image if smaller than the desired size to avoid raising an exception. Default: False. fill (float|tuple, optional): Pixel fill value for constant fill. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Default: 0. padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'. - constant: pads with a constant value, this value is specified with fill - edge: pads with the last value on the edge of the image - reflect: pads with reflection of image (without repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] - symmetric: pads with reflection of image (repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image. Returns: A callable object of RandomCrop. Examples: .. code-block:: python :name: code-example1 import paddle from paddle.vision.transforms import RandomCrop transform = RandomCrop(224) fake_img = paddle.randint(0, 255, shape=(3, 324,300), dtype = 'int32') print(fake_img.shape) # [3, 324, 300] crop_img = transform(fake_img) print(crop_img.shape) # [3, 224, 224] """ def __init__( self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant', keys=None, ): super().__init__(keys) if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding self.pad_if_needed = pad_if_needed self.fill = fill self.padding_mode = padding_mode def _get_param(self, img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (PIL Image): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ w, h = _get_image_size(img) th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def _apply_image(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if self.padding is not None: img = F.pad(img, self.padding, self.fill, self.padding_mode) w, h = _get_image_size(img) # pad the width if needed if self.pad_if_needed and w < self.size[1]: img = F.pad( img, (self.size[1] - w, 0), self.fill, self.padding_mode ) # pad the height if needed if self.pad_if_needed and h < self.size[0]: img = F.pad( img, (0, self.size[0] - h), self.fill, self.padding_mode ) i, j, h, w = self._get_param(img, self.size) return F.crop(img, i, j, h, w) class Pad(BaseTransform): """Pads the given CV Image on all sides with the given "pad" value. Args: padding (int|list|tuple): Padding on each border. If a single int is provided this is used to pad all borders. If list/tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a list/tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. ``constant`` means pads with a constant value, this value is specified with fill. ``edge`` means pads with the last value at the edge of the image. ``reflect`` means pads with reflection of image (without repeating the last value on the edge) padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``. ``symmetric`` menas pads with reflection of image (repeating the last value on the edge) padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image. Returns: A callable object of Pad. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import Pad transform = Pad(2) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) """ def __init__(self, padding, fill=0, padding_mode='constant', keys=None): assert isinstance(padding, (numbers.Number, list, tuple)) assert isinstance(fill, (numbers.Number, str, list, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] if isinstance(padding, list): padding = tuple(padding) if isinstance(fill, list): fill = tuple(fill) if isinstance(padding, Sequence) and len(padding) not in [2, 4]: raise ValueError( "Padding must be an int or a 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding)) ) super().__init__(keys) self.padding = padding self.fill = fill self.padding_mode = padding_mode def _apply_image(self, img): """ Args: img (PIL Image): Image to be padded. Returns: PIL Image: Padded image. """ return F.pad(img, self.padding, self.fill, self.padding_mode) def _check_sequence_input(x, name, req_sizes): msg = ( req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes]) ) if not isinstance(x, Sequence): raise TypeError(f"{name} should be a sequence of length {msg}.") if len(x) not in req_sizes: raise ValueError(f"{name} should be sequence of length {msg}.") def _setup_angle(x, name, req_sizes=(2,)): if isinstance(x, numbers.Number): if x < 0: raise ValueError( f"If {name} is a single number, it must be positive." ) x = [-x, x] else: _check_sequence_input(x, name, req_sizes) return [float(d) for d in x] class RandomAffine(BaseTransform): """Random affine transformation of the image. Args: degrees (int|float|tuple): The angle interval of the random rotation. If set as a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate. translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations. For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b. Default is None, will not translate. scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b. Default is None, will keep original scale and not scale. shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order. If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied. Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied. Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied. Default is None, will not apply shear. interpolation (str, optional): Interpolation method. If omitted, or if the image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST according the backend. When use pil backend, support method are as following: - "nearest": Image.NEAREST, - "bilinear": Image.BILINEAR, - "bicubic": Image.BICUBIC When use cv2 backend, support method are as following: - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "bicubic": cv2.INTER_CUBIC fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively. center (2-tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner. Default is the center of the image. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image. Returns: A callable object of RandomAffine. Examples: .. code-block:: python import paddle from paddle.vision.transforms import RandomAffine transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10]) fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32) fake_img = transform(fake_img) print(fake_img.shape) """ def __init__( self, degrees, translate=None, scale=None, shear=None, interpolation='nearest', fill=0, center=None, keys=None, ): self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,)) super().__init__(keys) assert interpolation in ['nearest', 'bilinear', 'bicubic'] self.interpolation = interpolation if translate is not None: _check_sequence_input(translate, "translate", req_sizes=(2,)) for t in translate: if not (0.0 <= t <= 1.0): raise ValueError( "translation values should be between 0 and 1" ) self.translate = translate if scale is not None: _check_sequence_input(scale, "scale", req_sizes=(2,)) for s in scale: if s <= 0: raise ValueError("scale values should be positive") self.scale = scale if shear is not None: self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4)) else: self.shear = shear if fill is None: fill = 0 elif not isinstance(fill, (Sequence, numbers.Number)): raise TypeError("Fill should be either a sequence or a number.") self.fill = fill if center is not None: _check_sequence_input(center, "center", req_sizes=(2,)) self.center = center def _get_param( self, img_size, degrees, translate=None, scale_ranges=None, shears=None ): """Get parameters for affine transformation Returns: params to be passed to the affine transformation """ angle = random.uniform(degrees[0], degrees[1]) if translate is not None: max_dx = float(translate[0] * img_size[0]) max_dy = float(translate[1] * img_size[1]) tx = int(random.uniform(-max_dx, max_dx)) ty = int(random.uniform(-max_dy, max_dy)) translations = (tx, ty) else: translations = (0, 0) if scale_ranges is not None: scale = random.uniform(scale_ranges[0], scale_ranges[1]) else: scale = 1.0 shear_x, shear_y = 0.0, 0.0 if shears is not None: shear_x = random.uniform(shears[0], shears[1]) if len(shears) == 4: shear_y = random.uniform(shears[2], shears[3]) shear = (shear_x, shear_y) return angle, translations, scale, shear def _apply_image(self, img): """ Args: img (PIL.Image|np.array): Image to be affine transformed. Returns: PIL.Image or np.array: Affine transformed image. """ w, h = _get_image_size(img) img_size = [w, h] ret = self._get_param( img_size, self.degrees, self.translate, self.scale, self.shear ) return F.affine( img, *ret, interpolation=self.interpolation, fill=self.fill, center=self.center, ) class RandomRotation(BaseTransform): """Rotates the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees) clockwise order. interpolation (str, optional): Interpolation method. If omitted, or if the image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST according the backend. when use pil backend, support method are as following: - "nearest": Image.NEAREST, - "bilinear": Image.BILINEAR, - "bicubic": Image.BICUBIC when use cv2 backend, support method are as following: - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "bicubic": cv2.INTER_CUBIC expand (bool|optional): Optional expansion flag. Default: False. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple|optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image. Returns: A callable object of RandomRotation. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import RandomRotation transform = RandomRotation(90) fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) """ def __init__( self, degrees, interpolation='nearest', expand=False, center=None, fill=0, keys=None, ): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError( "If degrees is a single number, it must be positive." ) self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError( "If degrees is a sequence, it must be of len 2." ) self.degrees = degrees super().__init__(keys) self.interpolation = interpolation self.expand = expand self.center = center self.fill = fill def _get_param(self, degrees): angle = random.uniform(degrees[0], degrees[1]) return angle def _apply_image(self, img): """ Args: img (PIL.Image|np.array): Image to be rotated. Returns: PIL.Image or np.array: Rotated image. """ angle = self._get_param(self.degrees) return F.rotate( img, angle, self.interpolation, self.expand, self.center, self.fill ) class RandomPerspective(BaseTransform): """Random perspective transformation with a given probability. Args: prob (float, optional): Probability of using transformation, ranges from 0 to 1, default is 0.5. distortion_scale (float, optional): Degree of distortion, ranges from 0 to 1, default is 0.5. interpolation (str, optional): Interpolation method. If omitted, or if the image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST. When use pil backend, support method are as following: - "nearest": Image.NEAREST, - "bilinear": Image.BILINEAR, - "bicubic": Image.BICUBIC When use cv2 backend, support method are as following: - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "bicubic": cv2.INTER_CUBIC fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): A perspectived image. Returns: A callable object of RandomPerspective. Examples: .. code-block:: python import paddle from paddle.vision.transforms import RandomPerspective transform = RandomPerspective(prob=1.0, distortion_scale=0.9) fake_img = paddle.randn((3, 200, 150)).astype(paddle.float32) fake_img = transform(fake_img) print(fake_img.shape) """ def __init__( self, prob=0.5, distortion_scale=0.5, interpolation='nearest', fill=0, keys=None, ): super().__init__(keys) assert 0 <= prob <= 1, "probability must be between 0 and 1" assert ( 0 <= distortion_scale <= 1 ), "distortion_scale must be between 0 and 1" assert interpolation in ['nearest', 'bilinear', 'bicubic'] assert isinstance(fill, (numbers.Number, str, list, tuple)) self.prob = prob self.distortion_scale = distortion_scale self.interpolation = interpolation self.fill = fill def get_params(self, width, height, distortion_scale): """ Returns: startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image, endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image. """ half_height = height // 2 half_width = width // 2 topleft = [ int(random.uniform(0, int(distortion_scale * half_width) + 1)), int(random.uniform(0, int(distortion_scale * half_height) + 1)), ] topright = [ int( random.uniform( width - int(distortion_scale * half_width) - 1, width ) ), int(random.uniform(0, int(distortion_scale * half_height) + 1)), ] botright = [ int( random.uniform( width - int(distortion_scale * half_width) - 1, width ) ), int( random.uniform( height - int(distortion_scale * half_height) - 1, height ) ), ] botleft = [ int(random.uniform(0, int(distortion_scale * half_width) + 1)), int( random.uniform( height - int(distortion_scale * half_height) - 1, height ) ), ] startpoints = [ [0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1], ] endpoints = [topleft, topright, botright, botleft] return startpoints, endpoints def _apply_image(self, img): """ Args: img (PIL.Image|np.array|paddle.Tensor): Image to be Perspectively transformed. Returns: PIL.Image|np.array|paddle.Tensor: Perspectively transformed image. """ width, height = _get_image_size(img) if random.random() < self.prob: startpoints, endpoints = self.get_params( width, height, self.distortion_scale ) return F.perspective( img, startpoints, endpoints, self.interpolation, self.fill ) return img class Grayscale(BaseTransform): """Converts image to grayscale. Args: num_output_channels (int): (1 or 3) number of channels desired for output image keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image. - If output_channels == 1 : returned image is single channel - If output_channels == 3 : returned image is 3 channel with r == g == b Returns: A callable object of Grayscale. Examples: .. code-block:: python import numpy as np from PIL import Image from paddle.vision.transforms import Grayscale transform = Grayscale() fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(np.array(fake_img).shape) """ def __init__(self, num_output_channels=1, keys=None): super().__init__(keys) self.num_output_channels = num_output_channels def _apply_image(self, img): """ Args: img (PIL Image): Image to be converted to grayscale. Returns: PIL Image: Randomly grayscaled image. """ return F.to_grayscale(img, self.num_output_channels) class RandomErasing(BaseTransform): """Erase the pixels in a rectangle region selected randomly. Args: prob (float, optional): Probability of the input data being erased. Default: 0.5. scale (sequence, optional): The proportional range of the erased area to the input image. Default: (0.02, 0.33). ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3). value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with. If value is a single number, all pixels will be erased with this value. If value is a sequence with length 3, the R, G, B channels will be ereased respectively. If value is set to "random", each pixel will be erased with random values. Default: 0. inplace (bool, optional): Whether this transform is inplace. Default: False. keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None. Shape: - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W). For np.array input, the shape should be (H, W, C). - output(paddle.Tensor | np.array | PIL.Image): A random erased image. Returns: A callable object of RandomErasing. Examples: .. code-block:: python import paddle fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32) transform = paddle.vision.transforms.RandomErasing() result = transform(fake_img) print(result) """ def __init__( self, prob=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False, keys=None, ): super().__init__(keys) assert isinstance( scale, (tuple, list) ), "scale should be a tuple or list" assert ( scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1] ), "scale should be of kind (min, max) and in range [0, 1]" assert isinstance( ratio, (tuple, list) ), "ratio should be a tuple or list" assert ( ratio[0] >= 0 and ratio[0] <= ratio[1] ), "ratio should be of kind (min, max)" assert ( prob >= 0 and prob <= 1 ), "The probability should be in range [0, 1]" assert isinstance( value, (numbers.Number, str, tuple, list) ), "value should be a number, tuple, list or str" if isinstance(value, str) and value != "random": raise ValueError("value must be 'random' when type is str") self.prob = prob self.scale = scale self.ratio = ratio self.value = value self.inplace = inplace def _get_param(self, img, scale, ratio, value): """Get parameters for ``erase`` for a random erasing. Args: img (paddle.Tensor | np.array | PIL.Image): Image to be erased. scale (sequence, optional): The proportional range of the erased area to the input image. ratio (sequence, optional): Aspect ratio range of the erased area. value (sequence | None): The value each pixel in erased area will be replaced with. If value is a sequence with length 3, the R, G, B channels will be ereased respectively. If value is None, each pixel will be erased with random values. Returns: tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase. """ if F._is_pil_image(img): shape = np.asarray(img).astype(np.uint8).shape h, w, c = shape[-3], shape[-2], shape[-1] elif F._is_numpy_image(img): h, w, c = img.shape[-3], img.shape[-2], img.shape[-1] elif F._is_tensor_image(img): c, h, w = img.shape[-3], img.shape[-2], img.shape[-1] img_area = h * w log_ratio = np.log(ratio) for _ in range(10): erase_area = np.random.uniform(*scale) * img_area aspect_ratio = np.exp(np.random.uniform(*log_ratio)) erase_h = int(round(np.sqrt(erase_area * aspect_ratio))) erase_w = int(round(np.sqrt(erase_area / aspect_ratio))) if erase_h >= h or erase_w >= w: continue if F._is_tensor_image(img): if value is None: v = paddle.normal(shape=[c, erase_h, erase_w]).astype( img.dtype ) else: v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None] else: if value is None: v = np.random.normal(size=[erase_h, erase_w, c]) * 255 else: v = np.array(value)[None, None, :] top = np.random.randint(0, h - erase_h + 1) left = np.random.randint(0, w - erase_w + 1) return top, left, erase_h, erase_w, v return 0, 0, h, w, img def _apply_image(self, img): """ Args: img (paddle.Tensor | np.array | PIL.Image): Image to be Erased. Returns: output (paddle.Tensor np.array | PIL.Image): A random erased image. """ if random.random() < self.prob: if isinstance(self.value, numbers.Number): value = [self.value] elif isinstance(self.value, str): value = None else: value = self.value if value is not None and not (len(value) == 1 or len(value) == 3): raise ValueError( "Value should be a single number or a sequence with length equals to image's channel." ) top, left, erase_h, erase_w, v = self._get_param( img, self.scale, self.ratio, value ) return F.erase(img, top, left, erase_h, erase_w, v, self.inplace) return img