transforms.py 64.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import random

import numpy as np
import numbers
import collections
import traceback

24
import paddle
L
LielinJiang 已提交
25 26 27 28 29 30 31 32 33
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

34
__all__ = []
L
LielinJiang 已提交
35 36


37 38 39 40 41
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
42
    elif F._is_tensor_image(img):
43 44 45 46 47 48
        if len(img.shape) == 3:
            return img.shape[1:][::-1]  # chw -> wh
        elif len(img.shape) == 4:
            return img.shape[2:][::-1]  # nchw -> wh
        else:
            raise ValueError(
49 50
                "The dim for input Tensor should be 3-D or 4-D, but received {}"
                .format(len(img.shape)))
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
70 71
            raise ValueError("{} values should be between {}".format(
                name, bound))
72 73 74 75 76 77 78 79 80 81
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
82 83 84 85 86 87
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
88
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
89 90 91 92 93 94

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
95

L
LielinJiang 已提交
96 97
        .. code-block:: python

98 99
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
100 101 102 103 104 105

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
106
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
107 108 109 110 111 112

    """

    def __init__(self, transforms):
        self.transforms = transforms

113
    def __call__(self, data):
L
LielinJiang 已提交
114 115
        for f in self.transforms:
            try:
116
                data = f(data)
L
LielinJiang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


133 134 135
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
136

137
    calling logic:
138 139 140 141

        if keys is None:
            _get_params -> _apply_image()
        else:
142
            _get_params -> _apply_*() for * in keys
143 144 145

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
146

147 148 149 150
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
151
            is (image, image) type, then the keys should be ("image", "image").
152 153 154 155
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

156 157 158 159 160
            - "image": input image, with shape of (H, W, C)
            - "coords": coordinates, with shape of (N, 2)
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format,

                       the 1st "xy" represents top left point of a box,
161 162 163
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
164

165 166
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
167

L
LielinJiang 已提交
168
    Examples:
169

L
LielinJiang 已提交
170 171 172
        .. code-block:: python

            import numpy as np
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
238 239 240

    """

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
274
            outputs.extend(inputs[len(self.keys):])
275 276 277 278 279 280

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
281

282 283
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
284

285 286
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
287

288 289
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
290

291 292
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
293

294 295 296 297

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
298 299
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

300
    If input is a grayscale image (H x W), it will be converted to an image of shape (H x W x 1).
L
LielinJiang 已提交
301 302 303 304
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

305 306 307
    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr,
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8.
308 309 310 311

    In the other cases, tensors are returned without scaling.

    Args:
312
        data_format (str, optional): Data format of output tensor, should be 'HWC' or
313 314
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
315

316 317 318 319 320 321 322
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

323
    Examples:
324

325 326 327 328 329 330 331 332
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
333
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
334 335 336 337

            transform = T.ToTensor()

            tensor = transform(fake_img)
338

L
Liyulingyue 已提交
339 340
            print(tensor.shape)
            # [3, 4, 5]
341

L
Liyulingyue 已提交
342 343
            print(tensor.dtype)
            # paddle.float32
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
362 363 364 365 366 367 368 369
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
370 371 372 373 374 375 376
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
            when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
377
            - "hamming": Image.HAMMING
378 379 380 381 382
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
383 384
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
385

386 387 388 389 390 391 392
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
393
    Examples:
394

L
LielinJiang 已提交
395 396 397
        .. code-block:: python

            import numpy as np
398
            from PIL import Image
399
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
400

401
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
402

403 404 405 406 407 408 409 410 411
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
412 413
    """

414 415
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
416 417
        assert isinstance(size, int) or (isinstance(size, Iterable)
                                         and len(size) == 2)
L
LielinJiang 已提交
418 419 420
        self.size = size
        self.interpolation = interpolation

421
    def _apply_image(self, img):
L
LielinJiang 已提交
422 423 424
        return F.resize(img, self.size, self.interpolation)


425
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
426 427 428 429 430 431
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
432
        size (int|list|tuple): Target size of output image, with (height, width) shape.
433
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin
434
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
435
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
436 437 438 439 440 441 442
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend,
            support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
443
            - "hamming": Image.HAMMING
444 445 446 447 448
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
449 450
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
451

452 453 454 455 456 457 458
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
459
    Examples:
460

L
LielinJiang 已提交
461 462 463
        .. code-block:: python

            import numpy as np
464
            from PIL import Image
465
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
466 467 468

            transform = RandomResizedCrop(224)

469
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
470 471

            fake_img = transform(fake_img)
472 473
            print(fake_img.size)

L
LielinJiang 已提交
474 475 476
    """

    def __init__(self,
477
                 size,
L
LielinJiang 已提交
478 479
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
480 481 482 483 484
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
485
        else:
486
            self.size = size
L
LielinJiang 已提交
487 488 489 490 491 492
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

493 494
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
495 496 497 498 499 500 501 502 503 504 505
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
506 507 508
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
509 510 511 512 513 514 515 516 517

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
518 519
        else:
            # return whole image
L
LielinJiang 已提交
520 521
            w = width
            h = height
522 523 524
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
525

526 527
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
528

529
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
530 531 532
        return F.resize(cropped_img, self.size, self.interpolation)


533
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
534 535 536
    """Crops the given the input data at the center.

    Args:
537 538 539
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

540 541 542 543 544 545 546
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
547
    Examples:
548

L
LielinJiang 已提交
549 550 551
        .. code-block:: python

            import numpy as np
552
            from PIL import Image
553
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
554 555 556

            transform = CenterCrop(224)

557
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
558 559

            fake_img = transform(fake_img)
560
            print(fake_img.size)
L
LielinJiang 已提交
561 562
    """

563 564 565 566
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
567
        else:
568
            self.size = size
L
LielinJiang 已提交
569

570 571
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
572 573


574
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
575 576 577
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
578
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
579
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
580

581 582 583 584 585 586 587
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
588
    Examples:
589

L
LielinJiang 已提交
590 591 592
        .. code-block:: python

            import numpy as np
593
            from PIL import Image
594
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
595

B
Bin Lu 已提交
596
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
597

598
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
599 600

            fake_img = transform(fake_img)
601
            print(fake_img.size)
L
LielinJiang 已提交
602 603
    """

604 605
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
606
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
607 608
        self.prob = prob

609 610 611
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
612 613 614
        return img


615
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
616 617 618
    """Vertically flip the input data randomly with a given probability.

    Args:
619 620
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
621

622 623 624 625 626 627 628
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
629
    Examples:
630

L
LielinJiang 已提交
631 632 633
        .. code-block:: python

            import numpy as np
634
            from PIL import Image
635
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
636

637
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
638

639
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
640 641

            fake_img = transform(fake_img)
642 643
            print(fake_img.size)

L
LielinJiang 已提交
644 645
    """

646 647
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
648
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
649 650
        self.prob = prob

651 652 653
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
654 655 656
        return img


657
class Normalize(BaseTransform):
L
LielinJiang 已提交
658 659 660 661 662 663
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
664 665
        mean (int|float|list|tuple, optional): Sequence of means for each channel.
        std (int|float|list|tuple, optional): Sequence of standard deviations for each channel.
666
        data_format (str, optional): Data format of img, should be 'HWC' or
667 668 669
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
670 671 672 673 674 675 676 677

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
678
    Examples:
679

L
LielinJiang 已提交
680
        .. code-block:: python
681 682
          :name: code-example
            import paddle
683
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
684

685
            normalize = Normalize(mean=[127.5, 127.5, 127.5],
686 687
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
688

689
            fake_img = paddle.rand([300,320,3]).numpy() * 255.
L
LielinJiang 已提交
690 691 692

            fake_img = normalize(fake_img)
            print(fake_img.shape)
693 694 695
            # (300, 320, 3)
            print(fake_img.max(), fake_img.min())
            # 0.99999905 -0.999974
696

L
LielinJiang 已提交
697 698
    """

699 700 701 702 703 704 705
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
706 707 708 709
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
710
            std = [std, std, std]
L
LielinJiang 已提交
711

712 713 714 715
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
716

717 718 719
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
720 721


722 723
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
724 725
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
726
    output image will be an instance of numpy.ndarray.
L
LielinJiang 已提交
727 728

    Args:
729 730
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
731

732 733
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
734
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input
735 736 737 738 739
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
740
    Examples:
741

L
LielinJiang 已提交
742 743 744
        .. code-block:: python

            import numpy as np
745 746
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
747

748
            transform = Transpose()
L
LielinJiang 已提交
749

750
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
751 752 753

            fake_img = transform(fake_img)
            print(fake_img.shape)
754

L
LielinJiang 已提交
755 756
    """

757 758 759 760 761
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
762 763 764
        if F._is_tensor_image(img):
            return img.transpose(self.order)

765 766
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
767

768 769
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
770
        return img.transpose(self.order)
L
LielinJiang 已提交
771 772


773
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
774 775 776 777 778
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
779
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
780

781 782 783 784 785 786 787
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
788
    Examples:
789

L
LielinJiang 已提交
790 791 792
        .. code-block:: python

            import numpy as np
793
            from PIL import Image
794
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
795 796 797

            transform = BrightnessTransform(0.4)

798
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
799 800

            fake_img = transform(fake_img)
801

L
LielinJiang 已提交
802 803
    """

804 805 806
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
807

808 809
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
810 811
            return img

812 813
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
814 815


816
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
817 818 819 820 821
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
822
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
823

824 825 826 827 828 829 830
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
831
    Examples:
832

L
LielinJiang 已提交
833 834 835
        .. code-block:: python

            import numpy as np
836
            from PIL import Image
837
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
838 839 840

            transform = ContrastTransform(0.4)

841
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
842 843

            fake_img = transform(fake_img)
844

L
LielinJiang 已提交
845 846
    """

847 848
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
849 850
        if value < 0:
            raise ValueError("contrast value should be non-negative")
851
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
852

853 854
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
855 856
            return img

857 858
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
859 860


861
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
862 863 864 865 866
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
867
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
868

869 870 871 872 873 874 875
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
876
    Examples:
877

L
LielinJiang 已提交
878 879 880
        .. code-block:: python

            import numpy as np
881
            from PIL import Image
882
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
883 884 885

            transform = SaturationTransform(0.4)

886
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
887

L
LielinJiang 已提交
888
            fake_img = transform(fake_img)
889

L
LielinJiang 已提交
890 891
    """

892 893 894
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
895

896 897
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
898 899
            return img

900 901
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
902

L
LielinJiang 已提交
903

904
class HueTransform(BaseTransform):
L
LielinJiang 已提交
905 906 907 908 909
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
910
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
911

912 913 914 915 916 917 918
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
919
    Examples:
920

L
LielinJiang 已提交
921 922 923
        .. code-block:: python

            import numpy as np
924
            from PIL import Image
925
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
926 927 928

            transform = HueTransform(0.4)

929
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
930 931

            fake_img = transform(fake_img)
932

L
LielinJiang 已提交
933 934
    """

935 936
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
937 938 939 940 941
        self.value = _check_input(value,
                                  'hue',
                                  center=0,
                                  bound=(-0.5, 0.5),
                                  clip_first_on_zero=False)
L
LielinJiang 已提交
942

943 944
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
945 946
            return img

947 948
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
949 950


951
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
952 953 954
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
955
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
956
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
957
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
958
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
959
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
960
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
961
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
962
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
963
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
964

965 966 967 968 969 970 971
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
972
    Examples:
973

L
LielinJiang 已提交
974 975 976
        .. code-block:: python

            import numpy as np
977
            from PIL import Image
978
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
979

980
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
981

982
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
983 984

            fake_img = transform(fake_img)
985

L
LielinJiang 已提交
986 987
    """

988 989 990 991 992
    def __init__(self,
                 brightness=0,
                 contrast=0,
                 saturation=0,
                 hue=0,
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
1009
        transforms = []
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1022 1023

        random.shuffle(transforms)
1024
        transform = Compose(transforms)
L
LielinJiang 已提交
1025

1026
        return transform
L
LielinJiang 已提交
1027

1028 1029 1030 1031
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1042 1043 1044 1045 1046 1047
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
1048
        padding (int|sequence, optional): Optional padding on each border
1049
            of the image. If a sequence of length 4 is provided, it is used to pad left,
1050 1051
            top, right, bottom borders respectively. Default: None, without padding.
        pad_if_needed (boolean, optional): It will pad the image if smaller than the
L
LielinJiang 已提交
1052
            desired size to avoid raising an exception. Default: False.
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
        fill (float|tuple, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0.
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                   padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                   will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                     padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                     will result in [2, 1, 1, 2, 3, 4, 4, 3]
1071
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1072

1073
    Shape
1074 1075 1076 1077 1078 1079
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1080
    Examples:
1081

L
LielinJiang 已提交
1082
        .. code-block:: python
1083
          :name: code-example1
L
LielinJiang 已提交
1084

1085
            import paddle
1086
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1087 1088
            transform = RandomCrop(224)

1089 1090
            fake_img = paddle.randint(0, 255, shape=(3, 324,300), dtype = 'int32')
            print(fake_img.shape) # [3, 324, 300]
L
LielinJiang 已提交
1091

1092 1093
            crop_img = transform(fake_img)
            print(crop_img.shape) # [3, 224, 224]
L
LielinJiang 已提交
1094 1095
    """

1096 1097 1098 1099 1100 1101 1102 1103
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1104 1105 1106 1107 1108 1109
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1110 1111
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1112

1113
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1114 1115 1116
        """Get parameters for ``crop`` for a random crop.

        Args:
1117
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1118 1119 1120 1121 1122
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1123
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1124 1125 1126 1127
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1128 1129
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1130 1131
        return i, j, th, tw

1132
    def _apply_image(self, img):
L
LielinJiang 已提交
1133 1134
        """
        Args:
1135
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1136

1137 1138
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1139
        """
1140 1141 1142 1143
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1144 1145

        # pad the width if needed
1146 1147 1148
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1149
        # pad the height if needed
1150 1151 1152
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1153

1154
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1155

1156
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1157 1158


1159
class Pad(BaseTransform):
L
LielinJiang 已提交
1160 1161 1162 1163
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1164 1165
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1166 1167
            this is the padding for the left, top, right and bottom borders
            respectively.
1168
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1169 1170 1171
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
1172 1173 1174 1175
            ``constant`` means pads with a constant value, this value is specified with fill.
            ``edge`` means pads with the last value at the edge of the image.
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
L
LielinJiang 已提交
1176 1177
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
1178
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
L
LielinJiang 已提交
1179
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1180
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1181

1182 1183 1184 1185 1186 1187 1188
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1189
    Examples:
1190

L
LielinJiang 已提交
1191 1192 1193
        .. code-block:: python

            import numpy as np
1194
            from PIL import Image
1195
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1196 1197 1198

            transform = Pad(2)

1199
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1200 1201

            fake_img = transform(fake_img)
1202
            print(fake_img.size)
L
LielinJiang 已提交
1203 1204
    """

1205
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1206 1207 1208
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1209 1210 1211 1212 1213 1214 1215

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1216 1217 1218 1219
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1220
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1221 1222 1223 1224
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1225
    def _apply_image(self, img):
L
LielinJiang 已提交
1226 1227
        """
        Args:
1228 1229
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1230
        Returns:
1231
            PIL Image: Padded image.
L
LielinJiang 已提交
1232 1233 1234 1235
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join(
        [str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError(f"{name} should be a sequence of length {msg}.")
    if len(x) not in req_sizes:
        raise ValueError(f"{name} should be sequence of length {msg}.")


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError(
                f"If {name} is a single number, it must be positive.")
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]


class RandomAffine(BaseTransform):
    """Random affine transformation of the image.

    Args:
        degrees (int|float|tuple): The angle interval of the random rotation.
            If set as a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate.
        translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations.
            For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a
1266
            and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b.
1267
            Default is None, will not translate.
1268
        scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b.
1269 1270
            Default is None, will keep original scale and not scale.
        shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order.
1271 1272
            If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied.
            Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied.
1273 1274
            Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Default is None, will not apply shear.
1275 1276 1277 1278 1279 1280
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend.
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1281
            - "bicubic": Image.BICUBIC
1282 1283 1284
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        center (2-tuple, optional): Optional center of rotation, (x, y).
            Origin is the upper left corner.
            Default is the center of the image.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image.

    Returns:
        A callable object of RandomAffine.

    Examples:
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomAffine

            transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10])

            fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 degrees,
                 translate=None,
                 scale=None,
                 shear=None,
                 interpolation='nearest',
                 fill=0,
                 center=None,
                 keys=None):
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))

        super(RandomAffine, self).__init__(keys)
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        self.interpolation = interpolation

        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
                        "translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")
        self.fill = fill

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2, ))
        self.center = center

    def _get_param(self,
                   img_size,
                   degrees,
                   translate=None,
                   scale_ranges=None,
                   shears=None):
        """Get parameters for affine transformation

        Returns:
            params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])

        if translate is not None:
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(random.uniform(-max_dx, max_dx))
            ty = int(random.uniform(-max_dy, max_dy))
            translations = (tx, ty)
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        shear_x, shear_y = 0.0, 0.0
        if shears is not None:
            shear_x = random.uniform(shears[0], shears[1])
            if len(shears) == 4:
                shear_y = random.uniform(shears[2], shears[3])
        shear = (shear_x, shear_y)

        return angle, translations, scale, shear

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array): Image to be affine transformed.

        Returns:
            PIL.Image or np.array: Affine transformed image.
        """

        w, h = _get_image_size(img)
        img_size = [w, h]

        ret = self._get_param(img_size, self.degrees, self.translate,
                              self.scale, self.shear)

1411 1412 1413 1414 1415
        return F.affine(img,
                        *ret,
                        interpolation=self.interpolation,
                        fill=self.fill,
                        center=self.center)
1416 1417


1418
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1419 1420 1421 1422 1423 1424
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1425 1426 1427 1428 1429
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend. when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1430
            - "bicubic": Image.BICUBIC
1431 1432 1433
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1434
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1435 1436 1437 1438 1439 1440 1441
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1442
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1443

1444 1445 1446 1447 1448 1449 1450
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1451
    Examples:
1452

L
LielinJiang 已提交
1453 1454 1455
        .. code-block:: python

            import numpy as np
1456 1457
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1458

1459
            transform = RandomRotation(90)
L
LielinJiang 已提交
1460

1461
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1462 1463

            fake_img = transform(fake_img)
1464
            print(fake_img.size)
L
LielinJiang 已提交
1465 1466
    """

1467 1468
    def __init__(self,
                 degrees,
1469
                 interpolation='nearest',
1470 1471 1472 1473
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1485
        super(RandomRotation, self).__init__(keys)
1486
        self.interpolation = interpolation
L
LielinJiang 已提交
1487 1488
        self.expand = expand
        self.center = center
1489
        self.fill = fill
L
LielinJiang 已提交
1490

1491
    def _get_param(self, degrees):
L
LielinJiang 已提交
1492 1493 1494 1495
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1496
    def _apply_image(self, img):
L
LielinJiang 已提交
1497
        """
1498 1499 1500
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1501
        Returns:
1502
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1503 1504
        """

1505
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1506

1507 1508
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1509 1510


1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
class RandomPerspective(BaseTransform):
    """Random perspective transformation with a given probability.

    Args:
        prob (float, optional): Probability of using transformation, ranges from
            0 to 1, default is 0.5.
        distortion_scale (float, optional): Degree of distortion, ranges from
            0 to 1, default is 0.5.
        interpolation (str, optional): Interpolation method. If omitted, or if
            the image has only one channel, it is set to PIL.Image.NEAREST or
            cv2.INTER_NEAREST.
1522 1523 1524
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1525
            - "bicubic": Image.BICUBIC
1526 1527 1528
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A perspectived image.

    Returns:
        A callable object of RandomPerspective.

    Examples:
1542

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomPerspective

            transform = RandomPerspective(prob=1.0, distortion_scale=0.9)

            fake_img = paddle.randn((3, 200, 150)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 prob=0.5,
                 distortion_scale=0.5,
                 interpolation='nearest',
                 fill=0,
                 keys=None):
        super(RandomPerspective, self).__init__(keys)
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
        assert 0 <= distortion_scale <= 1, "distortion_scale must be between 0 and 1"
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        assert isinstance(fill, (numbers.Number, str, list, tuple))

        self.prob = prob
        self.distortion_scale = distortion_scale
        self.interpolation = interpolation
        self.fill = fill

    def get_params(self, width, height, distortion_scale):
        """
        Returns:
            startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image,
            endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = height // 2
        half_width = width // 2
        topleft = [
1582 1583 1584 1585
            int(random.uniform(0,
                               int(distortion_scale * half_width) + 1)),
            int(random.uniform(0,
                               int(distortion_scale * half_height) + 1)),
1586 1587 1588 1589 1590
        ]
        topright = [
            int(
                random.uniform(width - int(distortion_scale * half_width) - 1,
                               width)),
1591 1592
            int(random.uniform(0,
                               int(distortion_scale * half_height) + 1)),
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        ]
        botright = [
            int(
                random.uniform(width - int(distortion_scale * half_width) - 1,
                               width)),
            int(
                random.uniform(height - int(distortion_scale * half_height) - 1,
                               height)),
        ]
        botleft = [
1603 1604
            int(random.uniform(0,
                               int(distortion_scale * half_width) + 1)),
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            int(
                random.uniform(height - int(distortion_scale * half_height) - 1,
                               height)),
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1],
                       [0, height - 1]]
        endpoints = [topleft, topright, botright, botleft]

        return startpoints, endpoints

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array|paddle.Tensor): Image to be Perspectively transformed.

        Returns:
            PIL.Image|np.array|paddle.Tensor: Perspectively transformed image.
        """

        width, height = _get_image_size(img)

        if random.random() < self.prob:
            startpoints, endpoints = self.get_params(width, height,
                                                     self.distortion_scale)
            return F.perspective(img, startpoints, endpoints,
                                 self.interpolation, self.fill)
        return img


1634
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1635 1636 1637
    """Converts image to grayscale.

    Args:
1638 1639
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1640 1641 1642

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
1643
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image.
1644 1645 1646
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1647
    Returns:
1648
        A callable object of Grayscale.
L
LielinJiang 已提交
1649 1650

    Examples:
1651

L
LielinJiang 已提交
1652 1653 1654
        .. code-block:: python

            import numpy as np
1655
            from PIL import Image
1656
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1657 1658 1659

            transform = Grayscale()

1660
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1661 1662

            fake_img = transform(fake_img)
1663
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1664 1665
    """

1666 1667 1668
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1669

1670
    def _apply_image(self, img):
L
LielinJiang 已提交
1671 1672
        """
        Args:
1673 1674
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1675
        Returns:
1676
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1677
        """
1678
        return F.to_grayscale(img, self.num_output_channels)
1679 1680 1681 1682 1683 1684 1685


class RandomErasing(BaseTransform):
    """Erase the pixels in a rectangle region selected randomly.

    Args:
        prob (float, optional): Probability of the input data being erased. Default: 0.5.
1686
        scale (sequence, optional): The proportional range of the erased area to the input image.
1687 1688 1689
                                    Default: (0.02, 0.33).
        ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3).
        value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with.
1690 1691 1692
                               If value is a single number, all pixels will be erased with this value.
                               If value is a sequence with length 3, the R, G, B channels will be ereased
                               respectively. If value is set to "random", each pixel will be erased with
1693 1694 1695
                               random values. Default: 0.
        inplace (bool, optional): Whether this transform is inplace. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1696

1697
    Shape:
1698
        - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W).
1699 1700 1701 1702 1703 1704 1705
                 For np.array input, the shape should be (H, W, C).
        - output(paddle.Tensor | np.array | PIL.Image): A random erased image.

    Returns:
        A callable object of RandomErasing.

    Examples:
1706

1707 1708 1709
        .. code-block:: python

            import paddle
1710

1711 1712
            fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
            transform = paddle.vision.transforms.RandomErasing()
J
JYChen 已提交
1713 1714 1715
            result = transform(fake_img)

            print(result)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
    """

    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.33),
                 ratio=(0.3, 3.3),
                 value=0,
                 inplace=False,
                 keys=None):
        super(RandomErasing, self).__init__(keys)
        assert isinstance(scale,
                          (tuple, list)), "scale should be a tuple or list"
        assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
                ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(ratio,
                          (tuple, list)), "ratio should be a tuple or list"
1732 1733 1734 1735
        assert (ratio[0] >= 0
                and ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        assert (prob >= 0
                and prob <= 1), "The probability should be in range [0, 1]"
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
        assert isinstance(
            value, (numbers.Number, str, tuple,
                    list)), "value should be a number, tuple, list or str"
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")

        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _get_param(self, img, scale, ratio, value):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
1753
            scale (sequence, optional): The proportional range of the erased area to the input image.
1754 1755
            ratio (sequence, optional): Aspect ratio range of the erased area.
            value (sequence | None): The value each pixel in erased area will be replaced with.
1756
                               If value is a sequence with length 3, the R, G, B channels will be ereased
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
                               respectively. If value is None, each pixel will be erased with random values.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
        """
        if F._is_pil_image(img):
            shape = np.asarray(img).astype(np.uint8).shape
            h, w, c = shape[-3], shape[-2], shape[-1]
        elif F._is_numpy_image(img):
            h, w, c = img.shape[-3], img.shape[-2], img.shape[-1]
        elif F._is_tensor_image(img):
            c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]

        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(10):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue
            if F._is_tensor_image(img):
                if value is None:
1781 1782
                    v = paddle.normal(shape=[c, erase_h, erase_w]).astype(
                        img.dtype)
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
                else:
                    v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None]
            else:
                if value is None:
                    v = np.random.normal(size=[erase_h, erase_w, c]) * 255
                else:
                    v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)

            return top, left, erase_h, erase_w, v

        return 0, 0, h, w, img

    def _apply_image(self, img):
        """
        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.

        Returns:
            output (paddle.Tensor np.array | PIL.Image): A random erased image.
        """

        if random.random() < self.prob:
            if isinstance(self.value, numbers.Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
1817 1818
            top, left, erase_h, erase_w, v = self._get_param(
                img, self.scale, self.ratio, value)
1819 1820
            return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
        return img