transforms.py 58.3 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

28
import paddle
L
LielinJiang 已提交
29
from paddle.utils import try_import
L
LielinJiang 已提交
30 31 32 33 34 35 36 37 38
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

39
__all__ = []
L
LielinJiang 已提交
40 41


42 43 44 45 46
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
47 48
    elif F._is_tensor_image(img):
        return img.shape[1:][::-1]  # chw
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
80 81 82 83 84 85
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
86
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
87 88 89 90 91 92 93 94 95

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

96 97
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
98 99 100 101 102 103

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
104
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
105 106 107 108 109 110

    """

    def __init__(self, transforms):
        self.transforms = transforms

111
    def __call__(self, data):
L
LielinJiang 已提交
112 113
        for f in self.transforms:
            try:
114
                data = f(data)
L
LielinJiang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


131 132 133
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
134

135 136 137 138 139 140 141 142 143
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
166 167 168 169 170
    Examples:
    
        .. code-block:: python

            import numpy as np
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
236 237 238

    """

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
272
            outputs.extend(inputs[len(self.keys):])
273 274 275 276 277 278

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
279

280 281
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
282

283 284
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
285

286 287
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
288

289 290
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
291

292 293 294 295

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
296 297 298 299 300 301 302 303 304 305
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
306 307 308 309

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
310
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
311 312
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
313 314 315 316 317 318 319 320
    
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

321 322 323 324 325 326 327 328 329 330
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
331
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
332 333 334 335

            transform = T.ToTensor()

            tensor = transform(fake_img)
L
Liyulingyue 已提交
336 337 338 339 340 341
            
            print(tensor.shape)
            # [3, 4, 5]
    
            print(tensor.dtype)
            # paddle.float32
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
360 361 362 363 364 365 366 367
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
383

384 385 386 387 388 389 390
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
391 392 393 394 395
    Examples:
    
        .. code-block:: python

            import numpy as np
396
            from PIL import Image
397
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
398

399
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
400

401 402 403 404 405 406 407 408 409
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
410 411
    """

412 413
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
414 415 416 417 418
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

419
    def _apply_image(self, img):
L
LielinJiang 已提交
420 421 422
        return F.resize(img, self.size, self.interpolation)


423
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
424 425 426 427 428 429
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
430
        size (int|list|tuple): Target size of output image, with (height, width) shape.
431 432
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
433
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
449

450 451 452 453 454 455 456
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
457 458 459 460 461
    Examples:
    
        .. code-block:: python

            import numpy as np
462
            from PIL import Image
463
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
464 465 466

            transform = RandomResizedCrop(224)

467
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
468 469

            fake_img = transform(fake_img)
470 471
            print(fake_img.size)

L
LielinJiang 已提交
472 473 474
    """

    def __init__(self,
475
                 size,
L
LielinJiang 已提交
476 477
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
478 479 480 481 482
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
483
        else:
484
            self.size = size
L
LielinJiang 已提交
485 486 487 488 489 490
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

491 492
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
493 494 495 496 497 498 499 500 501 502 503
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
504 505 506
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
507 508 509 510 511 512 513 514 515

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
516 517
        else:
            # return whole image
L
LielinJiang 已提交
518 519
            w = width
            h = height
520 521 522
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
523

524 525
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
526

527
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
528 529 530
        return F.resize(cropped_img, self.size, self.interpolation)


531
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
532 533 534
    """Crops the given the input data at the center.

    Args:
535 536 537
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

538 539 540 541 542 543 544
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
545 546 547 548 549
    Examples:
    
        .. code-block:: python

            import numpy as np
550
            from PIL import Image
551
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
552 553 554

            transform = CenterCrop(224)

555
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
556 557

            fake_img = transform(fake_img)
558
            print(fake_img.size)
L
LielinJiang 已提交
559 560
    """

561 562 563 564
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
565
        else:
566
            self.size = size
L
LielinJiang 已提交
567

568 569
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
570 571


572
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
573 574 575
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
576
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
577
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
578

579 580 581 582 583 584 585
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
586 587 588 589 590
    Examples:
    
        .. code-block:: python

            import numpy as np
591
            from PIL import Image
592
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
593

B
Bin Lu 已提交
594
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
595

596
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
597 598

            fake_img = transform(fake_img)
599
            print(fake_img.size)
L
LielinJiang 已提交
600 601
    """

602 603
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
604
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
605 606
        self.prob = prob

607 608 609
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
610 611 612
        return img


613
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
614 615 616
    """Vertically flip the input data randomly with a given probability.

    Args:
617 618
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
619

620 621 622 623 624 625 626
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
627 628 629 630 631
    Examples:
    
        .. code-block:: python

            import numpy as np
632
            from PIL import Image
633
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
634

635
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
636

637
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
638 639

            fake_img = transform(fake_img)
640 641
            print(fake_img.size)

L
LielinJiang 已提交
642 643
    """

644 645
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
646
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
647 648
        self.prob = prob

649 650 651
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
652 653 654
        return img


655
class Normalize(BaseTransform):
L
LielinJiang 已提交
656 657 658 659 660 661
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
662 663
        mean (int|float|list|tuple): Sequence of means for each channel.
        std (int|float|list|tuple): Sequence of standard deviations for each channel.
664 665 666 667
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
668 669 670 671 672 673 674 675

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
676 677 678 679 680
    Examples:
    
        .. code-block:: python

            import numpy as np
681
            from PIL import Image
682
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
683

684 685 686
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
687

688
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
689 690 691

            fake_img = normalize(fake_img)
            print(fake_img.shape)
692
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
693 694 695
    
    """

696 697 698 699 700 701 702
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
703 704 705 706
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
707
            std = [std, std, std]
L
LielinJiang 已提交
708

709 710 711 712
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
713

714 715 716
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
717 718


719 720
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
721 722
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
723
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
724 725

    Args:
726 727
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
728 729 730 731 732 733 734 735 736
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input 
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
737 738 739 740 741
    Examples:
    
        .. code-block:: python

            import numpy as np
742 743
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
744

745
            transform = Transpose()
L
LielinJiang 已提交
746

747
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
748 749 750 751 752 753

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

754 755 756 757 758
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
759 760 761
        if F._is_tensor_image(img):
            return img.transpose(self.order)

762 763
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
764

765 766
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
767
        return img.transpose(self.order)
L
LielinJiang 已提交
768 769


770
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
771 772 773 774 775
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
776
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
777

778 779 780 781 782 783 784
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
785 786 787 788 789
    Examples:
    
        .. code-block:: python

            import numpy as np
790
            from PIL import Image
791
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
792 793 794

            transform = BrightnessTransform(0.4)

795
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
796 797

            fake_img = transform(fake_img)
798
            
L
LielinJiang 已提交
799 800
    """

801 802 803
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
804

805 806
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
807 808
            return img

809 810
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
811 812


813
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
814 815 816 817 818
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
819
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
820

821 822 823 824 825 826 827
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
828 829 830 831 832
    Examples:
    
        .. code-block:: python

            import numpy as np
833
            from PIL import Image
834
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
835 836 837

            transform = ContrastTransform(0.4)

838
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
839 840

            fake_img = transform(fake_img)
841

L
LielinJiang 已提交
842 843
    """

844 845
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
846 847
        if value < 0:
            raise ValueError("contrast value should be non-negative")
848
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
849

850 851
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
852 853
            return img

854 855
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
856 857


858
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
859 860 861 862 863
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
864
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
865

866 867 868 869 870 871 872
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
873 874 875 876 877
    Examples:
    
        .. code-block:: python

            import numpy as np
878
            from PIL import Image
879
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
880 881 882

            transform = SaturationTransform(0.4)

883
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
884 885
        
            fake_img = transform(fake_img)
886

L
LielinJiang 已提交
887 888
    """

889 890 891
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
892

893 894
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
895 896
            return img

897 898
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
899

L
LielinJiang 已提交
900

901
class HueTransform(BaseTransform):
L
LielinJiang 已提交
902 903 904 905 906
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
907
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
908

909 910 911 912 913 914 915
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
916 917 918 919 920
    Examples:
    
        .. code-block:: python

            import numpy as np
921
            from PIL import Image
922
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
923 924 925

            transform = HueTransform(0.4)

926
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
927 928

            fake_img = transform(fake_img)
929

L
LielinJiang 已提交
930 931
    """

932 933 934 935
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
936

937 938
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
939 940
            return img

941 942
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
943 944


945
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
946 947 948
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
949
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
950
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
951
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
952
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
953
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
954
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
955
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
956
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
957
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
958

959 960 961 962 963 964 965
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
966 967 968 969 970
    Examples:
    
        .. code-block:: python

            import numpy as np
971
            from PIL import Image
972
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
973

974
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
975

976
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
977 978

            fake_img = transform(fake_img)
979

L
LielinJiang 已提交
980 981
    """

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
999
        transforms = []
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1012 1013

        random.shuffle(transforms)
1014
        transform = Compose(transforms)
L
LielinJiang 已提交
1015

1016
        return transform
L
LielinJiang 已提交
1017

1018 1019 1020 1021
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
1043
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1044 1045 1046 1047 1048 1049 1050 1051
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1052 1053 1054 1055 1056
    Examples:
    
        .. code-block:: python

            import numpy as np
1057
            from PIL import Image
1058
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1059 1060 1061

            transform = RandomCrop(224)

1062
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1063 1064

            fake_img = transform(fake_img)
1065
            print(fake_img.size)
L
LielinJiang 已提交
1066 1067
    """

1068 1069 1070 1071 1072 1073 1074 1075
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1076 1077 1078 1079 1080 1081
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1082 1083
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1084

1085
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1086 1087 1088
        """Get parameters for ``crop`` for a random crop.

        Args:
1089
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1090 1091 1092 1093 1094
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1095
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1096 1097 1098 1099
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1100 1101
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1102 1103
        return i, j, th, tw

1104
    def _apply_image(self, img):
L
LielinJiang 已提交
1105 1106
        """
        Args:
1107
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1108

1109 1110
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1111
        """
1112 1113 1114 1115
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1116 1117

        # pad the width if needed
1118 1119 1120
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1121
        # pad the height if needed
1122 1123 1124
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1125

1126
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1127

1128
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1129 1130


1131
class Pad(BaseTransform):
L
LielinJiang 已提交
1132 1133 1134 1135
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1136 1137
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1138 1139
            this is the padding for the left, top, right and bottom borders
            respectively.
1140
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1152
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1153 1154 1155 1156 1157 1158 1159 1160
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1161 1162 1163 1164 1165
    Examples:
    
        .. code-block:: python

            import numpy as np
1166
            from PIL import Image
1167
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1168 1169 1170

            transform = Pad(2)

1171
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1172 1173

            fake_img = transform(fake_img)
1174
            print(fake_img.size)
L
LielinJiang 已提交
1175 1176
    """

1177
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1178 1179 1180
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1181 1182 1183 1184 1185 1186 1187

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1188 1189 1190 1191
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1192
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1193 1194 1195 1196
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1197
    def _apply_image(self, img):
L
LielinJiang 已提交
1198 1199
        """
        Args:
1200 1201
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1202
        Returns:
1203
            PIL Image: Padded image.
L
LielinJiang 已提交
1204 1205 1206 1207
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join(
        [str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError(f"{name} should be a sequence of length {msg}.")
    if len(x) not in req_sizes:
        raise ValueError(f"{name} should be sequence of length {msg}.")


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError(
                f"If {name} is a single number, it must be positive.")
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]


class RandomAffine(BaseTransform):
    """Random affine transformation of the image.

    Args:
        degrees (int|float|tuple): The angle interval of the random rotation.
            If set as a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate.
        translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations.
            For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a
            and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b. 
            Default is None, will not translate.
        scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b. 
            Default is None, will keep original scale and not scale.
        shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order.
            If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied. 
            Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied. 
            Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Default is None, will not apply shear.
        interpolation (str, optional): Interpolation method. If omitted, or if the 
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. 
            When use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            When use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        center (2-tuple, optional): Optional center of rotation, (x, y).
            Origin is the upper left corner.
            Default is the center of the image.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image.

    Returns:
        A callable object of RandomAffine.

    Examples:
    
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomAffine

            transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10])

            fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 degrees,
                 translate=None,
                 scale=None,
                 shear=None,
                 interpolation='nearest',
                 fill=0,
                 center=None,
                 keys=None):
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))

        super(RandomAffine, self).__init__(keys)
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        self.interpolation = interpolation

        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
                        "translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")
        self.fill = fill

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2, ))
        self.center = center

    def _get_param(self,
                   img_size,
                   degrees,
                   translate=None,
                   scale_ranges=None,
                   shears=None):
        """Get parameters for affine transformation

        Returns:
            params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])

        if translate is not None:
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(random.uniform(-max_dx, max_dx))
            ty = int(random.uniform(-max_dy, max_dy))
            translations = (tx, ty)
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        shear_x, shear_y = 0.0, 0.0
        if shears is not None:
            shear_x = random.uniform(shears[0], shears[1])
            if len(shears) == 4:
                shear_y = random.uniform(shears[2], shears[3])
        shear = (shear_x, shear_y)

        return angle, translations, scale, shear

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array): Image to be affine transformed.

        Returns:
            PIL.Image or np.array: Affine transformed image.
        """

        w, h = _get_image_size(img)
        img_size = [w, h]

        ret = self._get_param(img_size, self.degrees, self.translate,
                              self.scale, self.shear)

        return F.affine(
            img,
            *ret,
            interpolation=self.interpolation,
            fill=self.fill,
            center=self.center)


1391
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1392 1393 1394 1395 1396 1397
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1398
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1399 1400 1401 1402 1403 1404 1405 1406 1407
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1408 1409 1410 1411 1412 1413 1414
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1415
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1416 1417 1418 1419 1420 1421 1422 1423
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1424 1425 1426 1427 1428
    Examples:
    
        .. code-block:: python

            import numpy as np
1429 1430
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1431

1432
            transform = RandomRotation(90)
L
LielinJiang 已提交
1433

1434
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1435 1436

            fake_img = transform(fake_img)
1437
            print(fake_img.size)
L
LielinJiang 已提交
1438 1439
    """

1440 1441
    def __init__(self,
                 degrees,
1442
                 interpolation='nearest',
1443 1444 1445 1446
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1458
        super(RandomRotation, self).__init__(keys)
1459
        self.interpolation = interpolation
L
LielinJiang 已提交
1460 1461
        self.expand = expand
        self.center = center
1462
        self.fill = fill
L
LielinJiang 已提交
1463

1464
    def _get_param(self, degrees):
L
LielinJiang 已提交
1465 1466 1467 1468
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1469
    def _apply_image(self, img):
L
LielinJiang 已提交
1470
        """
1471 1472 1473
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1474
        Returns:
1475
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1476 1477
        """

1478
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1479

1480 1481
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1482 1483


1484
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1485 1486 1487
    """Converts image to grayscale.

    Args:
1488 1489
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1490 1491 1492 1493 1494 1495 1496

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image. 
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1497
    Returns:
1498
        A callable object of Grayscale.
L
LielinJiang 已提交
1499 1500 1501 1502 1503 1504

    Examples:
    
        .. code-block:: python

            import numpy as np
1505
            from PIL import Image
1506
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1507 1508 1509

            transform = Grayscale()

1510
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1511 1512

            fake_img = transform(fake_img)
1513
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1514 1515
    """

1516 1517 1518
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1519

1520
    def _apply_image(self, img):
L
LielinJiang 已提交
1521 1522
        """
        Args:
1523 1524
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1525
        Returns:
1526
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1527
        """
1528
        return F.to_grayscale(img, self.num_output_channels)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562


class RandomErasing(BaseTransform):
    """Erase the pixels in a rectangle region selected randomly.

    Args:
        prob (float, optional): Probability of the input data being erased. Default: 0.5.
        scale (sequence, optional): The proportional range of the erased area to the input image. 
                                    Default: (0.02, 0.33).
        ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3).
        value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with.
                               If value is a single number, all pixels will be erased with this value. 
                               If value is a sequence with length 3, the R, G, B channels will be ereased 
                               respectively. If value is set to "random", each pixel will be erased with 
                               random values. Default: 0.
        inplace (bool, optional): Whether this transform is inplace. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
    
    Shape:
        - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W). 
                 For np.array input, the shape should be (H, W, C).
        - output(paddle.Tensor | np.array | PIL.Image): A random erased image.

    Returns:
        A callable object of RandomErasing.

    Examples:
    
        .. code-block:: python

            import paddle
            
            fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
            transform = paddle.vision.transforms.RandomErasing()
J
JYChen 已提交
1563 1564 1565
            result = transform(fake_img)

            print(result)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    """

    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.33),
                 ratio=(0.3, 3.3),
                 value=0,
                 inplace=False,
                 keys=None):
        super(RandomErasing, self).__init__(keys)
        assert isinstance(scale,
                          (tuple, list)), "scale should be a tuple or list"
        assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
                ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(ratio,
                          (tuple, list)), "ratio should be a tuple or list"
        assert (ratio[0] >= 0 and
                ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        assert (prob >= 0 and
                prob <= 1), "The probability should be in range [0, 1]"
        assert isinstance(
            value, (numbers.Number, str, tuple,
                    list)), "value should be a number, tuple, list or str"
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")

        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _get_param(self, img, scale, ratio, value):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
            scale (sequence, optional): The proportional range of the erased area to the input image. 
            ratio (sequence, optional): Aspect ratio range of the erased area.
            value (sequence | None): The value each pixel in erased area will be replaced with.
                               If value is a sequence with length 3, the R, G, B channels will be ereased 
                               respectively. If value is None, each pixel will be erased with random values.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
        """
        if F._is_pil_image(img):
            shape = np.asarray(img).astype(np.uint8).shape
            h, w, c = shape[-3], shape[-2], shape[-1]
        elif F._is_numpy_image(img):
            h, w, c = img.shape[-3], img.shape[-2], img.shape[-1]
        elif F._is_tensor_image(img):
            c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]

        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(10):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue
            if F._is_tensor_image(img):
                if value is None:
                    v = paddle.normal(
                        shape=[c, erase_h, erase_w]).astype(img.dtype)
                else:
                    v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None]
            else:
                if value is None:
                    v = np.random.normal(size=[erase_h, erase_w, c]) * 255
                else:
                    v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)

            return top, left, erase_h, erase_w, v

        return 0, 0, h, w, img

    def _apply_image(self, img):
        """
        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.

        Returns:
            output (paddle.Tensor np.array | PIL.Image): A random erased image.
        """

        if random.random() < self.prob:
            if isinstance(self.value, numbers.Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
            top, left, erase_h, erase_w, v = self._get_param(img, self.scale,
                                                             self.ratio, value)
            return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
        return img