transforms.py 63.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

28
import paddle
L
LielinJiang 已提交
29
from paddle.utils import try_import
L
LielinJiang 已提交
30 31 32 33 34 35 36 37 38
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

39
__all__ = []
L
LielinJiang 已提交
40 41


42 43 44 45 46
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
47
    elif F._is_tensor_image(img):
48 49 50 51 52 53 54 55
        if len(img.shape) == 3:
            return img.shape[1:][::-1]  # chw -> wh
        elif len(img.shape) == 4:
            return img.shape[2:][::-1]  # nchw -> wh
        else:
            raise ValueError(
                "The dim for input Tensor should be 3-D or 4-D, but received {}".
                format(len(img.shape)))
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
87 88 89 90 91 92
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
93
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
94 95 96 97 98 99 100 101 102

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

103 104
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
105 106 107 108 109 110

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
111
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
112 113 114 115 116 117

    """

    def __init__(self, transforms):
        self.transforms = transforms

118
    def __call__(self, data):
L
LielinJiang 已提交
119 120
        for f in self.transforms:
            try:
121
                data = f(data)
L
LielinJiang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


138 139 140
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
141

142 143 144 145 146 147 148 149 150
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
173 174 175 176 177
    Examples:
    
        .. code-block:: python

            import numpy as np
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
243 244 245

    """

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
279
            outputs.extend(inputs[len(self.keys):])
280 281 282 283 284 285

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
286

287 288
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
289

290 291
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
292

293 294
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
295

296 297
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
298

299 300 301 302

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
303 304 305 306 307 308 309 310 311 312
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
313 314 315 316

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
317
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
318 319
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
320 321 322 323 324 325 326 327
    
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

328 329 330 331 332 333 334 335 336 337
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
338
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
339 340 341 342

            transform = T.ToTensor()

            tensor = transform(fake_img)
L
Liyulingyue 已提交
343 344 345 346 347 348
            
            print(tensor.shape)
            # [3, 4, 5]
    
            print(tensor.dtype)
            # paddle.float32
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
367 368 369 370 371 372 373 374
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
390

391 392 393 394 395 396 397
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
398 399 400 401 402
    Examples:
    
        .. code-block:: python

            import numpy as np
403
            from PIL import Image
404
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
405

406
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
407

408 409 410 411 412 413 414 415 416
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
417 418
    """

419 420
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
421 422 423 424 425
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

426
    def _apply_image(self, img):
L
LielinJiang 已提交
427 428 429
        return F.resize(img, self.size, self.interpolation)


430
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
431 432 433 434 435 436
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
437
        size (int|list|tuple): Target size of output image, with (height, width) shape.
438 439
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
440
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
456

457 458 459 460 461 462 463
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
464 465 466 467 468
    Examples:
    
        .. code-block:: python

            import numpy as np
469
            from PIL import Image
470
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
471 472 473

            transform = RandomResizedCrop(224)

474
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
475 476

            fake_img = transform(fake_img)
477 478
            print(fake_img.size)

L
LielinJiang 已提交
479 480 481
    """

    def __init__(self,
482
                 size,
L
LielinJiang 已提交
483 484
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
485 486 487 488 489
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
490
        else:
491
            self.size = size
L
LielinJiang 已提交
492 493 494 495 496 497
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

498 499
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
500 501 502 503 504 505 506 507 508 509 510
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
511 512 513
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
514 515 516 517 518 519 520 521 522

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
523 524
        else:
            # return whole image
L
LielinJiang 已提交
525 526
            w = width
            h = height
527 528 529
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
530

531 532
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
533

534
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
535 536 537
        return F.resize(cropped_img, self.size, self.interpolation)


538
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
539 540 541
    """Crops the given the input data at the center.

    Args:
542 543 544
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

545 546 547 548 549 550 551
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
552 553 554 555 556
    Examples:
    
        .. code-block:: python

            import numpy as np
557
            from PIL import Image
558
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
559 560 561

            transform = CenterCrop(224)

562
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
563 564

            fake_img = transform(fake_img)
565
            print(fake_img.size)
L
LielinJiang 已提交
566 567
    """

568 569 570 571
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
572
        else:
573
            self.size = size
L
LielinJiang 已提交
574

575 576
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
577 578


579
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
580 581 582
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
583
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
584
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
585

586 587 588 589 590 591 592
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
593 594 595 596 597
    Examples:
    
        .. code-block:: python

            import numpy as np
598
            from PIL import Image
599
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
600

B
Bin Lu 已提交
601
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
602

603
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
604 605

            fake_img = transform(fake_img)
606
            print(fake_img.size)
L
LielinJiang 已提交
607 608
    """

609 610
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
611
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
612 613
        self.prob = prob

614 615 616
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
617 618 619
        return img


620
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
621 622 623
    """Vertically flip the input data randomly with a given probability.

    Args:
624 625
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
626

627 628 629 630 631 632 633
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
634 635 636 637 638
    Examples:
    
        .. code-block:: python

            import numpy as np
639
            from PIL import Image
640
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
641

642
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
643

644
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
645 646

            fake_img = transform(fake_img)
647 648
            print(fake_img.size)

L
LielinJiang 已提交
649 650
    """

651 652
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
653
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
654 655
        self.prob = prob

656 657 658
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
659 660 661
        return img


662
class Normalize(BaseTransform):
L
LielinJiang 已提交
663 664 665 666 667 668
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
669 670
        mean (int|float|list|tuple): Sequence of means for each channel.
        std (int|float|list|tuple): Sequence of standard deviations for each channel.
671 672 673 674
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
675 676 677 678 679 680 681 682

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
683 684 685 686 687
    Examples:
    
        .. code-block:: python

            import numpy as np
688
            from PIL import Image
689
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
690

691 692 693
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
694

695
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
696 697 698

            fake_img = normalize(fake_img)
            print(fake_img.shape)
699
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
700 701 702
    
    """

703 704 705 706 707 708 709
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
710 711 712 713
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
714
            std = [std, std, std]
L
LielinJiang 已提交
715

716 717 718 719
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
720

721 722 723
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
724 725


726 727
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
728 729
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
730
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
731 732

    Args:
733 734
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
735 736 737 738 739 740 741 742 743
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input 
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
744 745 746 747 748
    Examples:
    
        .. code-block:: python

            import numpy as np
749 750
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
751

752
            transform = Transpose()
L
LielinJiang 已提交
753

754
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
755 756 757 758 759 760

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

761 762 763 764 765
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
766 767 768
        if F._is_tensor_image(img):
            return img.transpose(self.order)

769 770
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
771

772 773
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
774
        return img.transpose(self.order)
L
LielinJiang 已提交
775 776


777
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
778 779 780 781 782
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
783
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
784

785 786 787 788 789 790 791
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
792 793 794 795 796
    Examples:
    
        .. code-block:: python

            import numpy as np
797
            from PIL import Image
798
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
799 800 801

            transform = BrightnessTransform(0.4)

802
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
803 804

            fake_img = transform(fake_img)
805
            
L
LielinJiang 已提交
806 807
    """

808 809 810
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
811

812 813
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
814 815
            return img

816 817
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
818 819


820
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
821 822 823 824 825
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
826
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
827

828 829 830 831 832 833 834
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
835 836 837 838 839
    Examples:
    
        .. code-block:: python

            import numpy as np
840
            from PIL import Image
841
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
842 843 844

            transform = ContrastTransform(0.4)

845
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
846 847

            fake_img = transform(fake_img)
848

L
LielinJiang 已提交
849 850
    """

851 852
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
853 854
        if value < 0:
            raise ValueError("contrast value should be non-negative")
855
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
856

857 858
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
859 860
            return img

861 862
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
863 864


865
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
866 867 868 869 870
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
871
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
872

873 874 875 876 877 878 879
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
880 881 882 883 884
    Examples:
    
        .. code-block:: python

            import numpy as np
885
            from PIL import Image
886
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
887 888 889

            transform = SaturationTransform(0.4)

890
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
891 892
        
            fake_img = transform(fake_img)
893

L
LielinJiang 已提交
894 895
    """

896 897 898
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
899

900 901
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
902 903
            return img

904 905
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
906

L
LielinJiang 已提交
907

908
class HueTransform(BaseTransform):
L
LielinJiang 已提交
909 910 911 912 913
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
914
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
915

916 917 918 919 920 921 922
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
923 924 925 926 927
    Examples:
    
        .. code-block:: python

            import numpy as np
928
            from PIL import Image
929
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
930 931 932

            transform = HueTransform(0.4)

933
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
934 935

            fake_img = transform(fake_img)
936

L
LielinJiang 已提交
937 938
    """

939 940 941 942
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
943

944 945
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
946 947
            return img

948 949
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
950 951


952
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
953 954 955
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
956
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
957
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
958
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
959
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
960
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
961
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
962
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
963
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
964
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
965

966 967 968 969 970 971 972
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
973 974 975 976 977
    Examples:
    
        .. code-block:: python

            import numpy as np
978
            from PIL import Image
979
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
980

981
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
982

983
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
984 985

            fake_img = transform(fake_img)
986

L
LielinJiang 已提交
987 988
    """

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
1006
        transforms = []
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1019 1020

        random.shuffle(transforms)
1021
        transform = Compose(transforms)
L
LielinJiang 已提交
1022

1023
        return transform
L
LielinJiang 已提交
1024

1025 1026 1027 1028
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
1050
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1051 1052 1053 1054 1055 1056 1057 1058
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1059 1060 1061 1062 1063
    Examples:
    
        .. code-block:: python

            import numpy as np
1064
            from PIL import Image
1065
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1066 1067 1068

            transform = RandomCrop(224)

1069
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1070 1071

            fake_img = transform(fake_img)
1072
            print(fake_img.size)
L
LielinJiang 已提交
1073 1074
    """

1075 1076 1077 1078 1079 1080 1081 1082
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1083 1084 1085 1086 1087 1088
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1089 1090
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1091

1092
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1093 1094 1095
        """Get parameters for ``crop`` for a random crop.

        Args:
1096
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1097 1098 1099 1100 1101
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1102
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1103 1104 1105 1106
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1107 1108
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1109 1110
        return i, j, th, tw

1111
    def _apply_image(self, img):
L
LielinJiang 已提交
1112 1113
        """
        Args:
1114
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1115

1116 1117
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1118
        """
1119 1120 1121 1122
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1123 1124

        # pad the width if needed
1125 1126 1127
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1128
        # pad the height if needed
1129 1130 1131
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1132

1133
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1134

1135
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1136 1137


1138
class Pad(BaseTransform):
L
LielinJiang 已提交
1139 1140 1141 1142
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1143 1144
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1145 1146
            this is the padding for the left, top, right and bottom borders
            respectively.
1147
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1159
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1160 1161 1162 1163 1164 1165 1166 1167
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1168 1169 1170 1171 1172
    Examples:
    
        .. code-block:: python

            import numpy as np
1173
            from PIL import Image
1174
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1175 1176 1177

            transform = Pad(2)

1178
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1179 1180

            fake_img = transform(fake_img)
1181
            print(fake_img.size)
L
LielinJiang 已提交
1182 1183
    """

1184
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1185 1186 1187
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1188 1189 1190 1191 1192 1193 1194

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1195 1196 1197 1198
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1199
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1200 1201 1202 1203
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1204
    def _apply_image(self, img):
L
LielinJiang 已提交
1205 1206
        """
        Args:
1207 1208
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1209
        Returns:
1210
            PIL Image: Padded image.
L
LielinJiang 已提交
1211 1212 1213 1214
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join(
        [str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError(f"{name} should be a sequence of length {msg}.")
    if len(x) not in req_sizes:
        raise ValueError(f"{name} should be sequence of length {msg}.")


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError(
                f"If {name} is a single number, it must be positive.")
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]


class RandomAffine(BaseTransform):
    """Random affine transformation of the image.

    Args:
        degrees (int|float|tuple): The angle interval of the random rotation.
            If set as a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate.
        translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations.
            For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a
            and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b. 
            Default is None, will not translate.
        scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b. 
            Default is None, will keep original scale and not scale.
        shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order.
            If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied. 
            Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied. 
            Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Default is None, will not apply shear.
        interpolation (str, optional): Interpolation method. If omitted, or if the 
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. 
            When use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            When use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        center (2-tuple, optional): Optional center of rotation, (x, y).
            Origin is the upper left corner.
            Default is the center of the image.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image.

    Returns:
        A callable object of RandomAffine.

    Examples:
    
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomAffine

            transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10])

            fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 degrees,
                 translate=None,
                 scale=None,
                 shear=None,
                 interpolation='nearest',
                 fill=0,
                 center=None,
                 keys=None):
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))

        super(RandomAffine, self).__init__(keys)
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        self.interpolation = interpolation

        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
                        "translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")
        self.fill = fill

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2, ))
        self.center = center

    def _get_param(self,
                   img_size,
                   degrees,
                   translate=None,
                   scale_ranges=None,
                   shears=None):
        """Get parameters for affine transformation

        Returns:
            params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])

        if translate is not None:
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(random.uniform(-max_dx, max_dx))
            ty = int(random.uniform(-max_dy, max_dy))
            translations = (tx, ty)
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        shear_x, shear_y = 0.0, 0.0
        if shears is not None:
            shear_x = random.uniform(shears[0], shears[1])
            if len(shears) == 4:
                shear_y = random.uniform(shears[2], shears[3])
        shear = (shear_x, shear_y)

        return angle, translations, scale, shear

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array): Image to be affine transformed.

        Returns:
            PIL.Image or np.array: Affine transformed image.
        """

        w, h = _get_image_size(img)
        img_size = [w, h]

        ret = self._get_param(img_size, self.degrees, self.translate,
                              self.scale, self.shear)

        return F.affine(
            img,
            *ret,
            interpolation=self.interpolation,
            fill=self.fill,
            center=self.center)


1398
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1399 1400 1401 1402 1403 1404
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1405
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1406 1407 1408 1409 1410 1411 1412 1413 1414
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1415 1416 1417 1418 1419 1420 1421
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1422
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1423 1424 1425 1426 1427 1428 1429 1430
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1431 1432 1433 1434 1435
    Examples:
    
        .. code-block:: python

            import numpy as np
1436 1437
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1438

1439
            transform = RandomRotation(90)
L
LielinJiang 已提交
1440

1441
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1442 1443

            fake_img = transform(fake_img)
1444
            print(fake_img.size)
L
LielinJiang 已提交
1445 1446
    """

1447 1448
    def __init__(self,
                 degrees,
1449
                 interpolation='nearest',
1450 1451 1452 1453
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1465
        super(RandomRotation, self).__init__(keys)
1466
        self.interpolation = interpolation
L
LielinJiang 已提交
1467 1468
        self.expand = expand
        self.center = center
1469
        self.fill = fill
L
LielinJiang 已提交
1470

1471
    def _get_param(self, degrees):
L
LielinJiang 已提交
1472 1473 1474 1475
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1476
    def _apply_image(self, img):
L
LielinJiang 已提交
1477
        """
1478 1479 1480
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1481
        Returns:
1482
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1483 1484
        """

1485
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1486

1487 1488
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1489 1490


1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
class RandomPerspective(BaseTransform):
    """Random perspective transformation with a given probability.

    Args:
        prob (float, optional): Probability of using transformation, ranges from
            0 to 1, default is 0.5.
        distortion_scale (float, optional): Degree of distortion, ranges from
            0 to 1, default is 0.5.
        interpolation (str, optional): Interpolation method. If omitted, or if
            the image has only one channel, it is set to PIL.Image.NEAREST or
            cv2.INTER_NEAREST.
            When use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            When use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A perspectived image.

    Returns:
        A callable object of RandomPerspective.

    Examples:
    
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomPerspective

            transform = RandomPerspective(prob=1.0, distortion_scale=0.9)

            fake_img = paddle.randn((3, 200, 150)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 prob=0.5,
                 distortion_scale=0.5,
                 interpolation='nearest',
                 fill=0,
                 keys=None):
        super(RandomPerspective, self).__init__(keys)
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
        assert 0 <= distortion_scale <= 1, "distortion_scale must be between 0 and 1"
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        assert isinstance(fill, (numbers.Number, str, list, tuple))

        self.prob = prob
        self.distortion_scale = distortion_scale
        self.interpolation = interpolation
        self.fill = fill

    def get_params(self, width, height, distortion_scale):
        """
        Returns:
            startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image,
            endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(random.uniform(0, int(distortion_scale * half_width) + 1)),
            int(random.uniform(0, int(distortion_scale * half_height) + 1)),
        ]
        topright = [
            int(
                random.uniform(width - int(distortion_scale * half_width) - 1,
                               width)),
            int(random.uniform(0, int(distortion_scale * half_height) + 1)),
        ]
        botright = [
            int(
                random.uniform(width - int(distortion_scale * half_width) - 1,
                               width)),
            int(
                random.uniform(height - int(distortion_scale * half_height) - 1,
                               height)),
        ]
        botleft = [
            int(random.uniform(0, int(distortion_scale * half_width) + 1)),
            int(
                random.uniform(height - int(distortion_scale * half_height) - 1,
                               height)),
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1],
                       [0, height - 1]]
        endpoints = [topleft, topright, botright, botleft]

        return startpoints, endpoints

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array|paddle.Tensor): Image to be Perspectively transformed.

        Returns:
            PIL.Image|np.array|paddle.Tensor: Perspectively transformed image.
        """

        width, height = _get_image_size(img)

        if random.random() < self.prob:
            startpoints, endpoints = self.get_params(width, height,
                                                     self.distortion_scale)
            return F.perspective(img, startpoints, endpoints,
                                 self.interpolation, self.fill)
        return img


1610
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1611 1612 1613
    """Converts image to grayscale.

    Args:
1614 1615
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1616 1617 1618 1619 1620 1621 1622

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image. 
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1623
    Returns:
1624
        A callable object of Grayscale.
L
LielinJiang 已提交
1625 1626 1627 1628 1629 1630

    Examples:
    
        .. code-block:: python

            import numpy as np
1631
            from PIL import Image
1632
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1633 1634 1635

            transform = Grayscale()

1636
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1637 1638

            fake_img = transform(fake_img)
1639
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1640 1641
    """

1642 1643 1644
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1645

1646
    def _apply_image(self, img):
L
LielinJiang 已提交
1647 1648
        """
        Args:
1649 1650
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1651
        Returns:
1652
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1653
        """
1654
        return F.to_grayscale(img, self.num_output_channels)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688


class RandomErasing(BaseTransform):
    """Erase the pixels in a rectangle region selected randomly.

    Args:
        prob (float, optional): Probability of the input data being erased. Default: 0.5.
        scale (sequence, optional): The proportional range of the erased area to the input image. 
                                    Default: (0.02, 0.33).
        ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3).
        value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with.
                               If value is a single number, all pixels will be erased with this value. 
                               If value is a sequence with length 3, the R, G, B channels will be ereased 
                               respectively. If value is set to "random", each pixel will be erased with 
                               random values. Default: 0.
        inplace (bool, optional): Whether this transform is inplace. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
    
    Shape:
        - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W). 
                 For np.array input, the shape should be (H, W, C).
        - output(paddle.Tensor | np.array | PIL.Image): A random erased image.

    Returns:
        A callable object of RandomErasing.

    Examples:
    
        .. code-block:: python

            import paddle
            
            fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
            transform = paddle.vision.transforms.RandomErasing()
J
JYChen 已提交
1689 1690 1691
            result = transform(fake_img)

            print(result)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    """

    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.33),
                 ratio=(0.3, 3.3),
                 value=0,
                 inplace=False,
                 keys=None):
        super(RandomErasing, self).__init__(keys)
        assert isinstance(scale,
                          (tuple, list)), "scale should be a tuple or list"
        assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
                ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(ratio,
                          (tuple, list)), "ratio should be a tuple or list"
        assert (ratio[0] >= 0 and
                ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        assert (prob >= 0 and
                prob <= 1), "The probability should be in range [0, 1]"
        assert isinstance(
            value, (numbers.Number, str, tuple,
                    list)), "value should be a number, tuple, list or str"
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")

        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _get_param(self, img, scale, ratio, value):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
            scale (sequence, optional): The proportional range of the erased area to the input image. 
            ratio (sequence, optional): Aspect ratio range of the erased area.
            value (sequence | None): The value each pixel in erased area will be replaced with.
                               If value is a sequence with length 3, the R, G, B channels will be ereased 
                               respectively. If value is None, each pixel will be erased with random values.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
        """
        if F._is_pil_image(img):
            shape = np.asarray(img).astype(np.uint8).shape
            h, w, c = shape[-3], shape[-2], shape[-1]
        elif F._is_numpy_image(img):
            h, w, c = img.shape[-3], img.shape[-2], img.shape[-1]
        elif F._is_tensor_image(img):
            c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]

        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(10):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue
            if F._is_tensor_image(img):
                if value is None:
                    v = paddle.normal(
                        shape=[c, erase_h, erase_w]).astype(img.dtype)
                else:
                    v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None]
            else:
                if value is None:
                    v = np.random.normal(size=[erase_h, erase_w, c]) * 255
                else:
                    v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)

            return top, left, erase_h, erase_w, v

        return 0, 0, h, w, img

    def _apply_image(self, img):
        """
        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.

        Returns:
            output (paddle.Tensor np.array | PIL.Image): A random erased image.
        """

        if random.random() < self.prob:
            if isinstance(self.value, numbers.Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
            top, left, erase_h, erase_w, v = self._get_param(img, self.scale,
                                                             self.ratio, value)
            return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
        return img