transforms.py 64.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

26
import paddle
L
LielinJiang 已提交
27
from paddle.utils import try_import
L
LielinJiang 已提交
28 29 30 31 32 33 34 35 36
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

37
__all__ = []
L
LielinJiang 已提交
38 39


40 41 42 43 44
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
45
    elif F._is_tensor_image(img):
46 47 48 49 50 51
        if len(img.shape) == 3:
            return img.shape[1:][::-1]  # chw -> wh
        elif len(img.shape) == 4:
            return img.shape[2:][::-1]  # nchw -> wh
        else:
            raise ValueError(
52 53
                "The dim for input Tensor should be 3-D or 4-D, but received {}"
                .format(len(img.shape)))
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
73 74
            raise ValueError("{} values should be between {}".format(
                name, bound))
75 76 77 78 79 80 81 82 83 84
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
85 86 87 88 89 90
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
91
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
92 93 94 95 96 97

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
98

L
LielinJiang 已提交
99 100
        .. code-block:: python

101 102
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
103 104 105 106 107 108

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
109
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
110 111 112 113 114 115

    """

    def __init__(self, transforms):
        self.transforms = transforms

116
    def __call__(self, data):
L
LielinJiang 已提交
117 118
        for f in self.transforms:
            try:
119
                data = f(data)
L
LielinJiang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


136 137 138
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
139

140
    calling logic:
141 142 143 144

        if keys is None:
            _get_params -> _apply_image()
        else:
145
            _get_params -> _apply_*() for * in keys
146 147 148

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
149

150 151 152 153
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
154
            is (image, image) type, then the keys should be ("image", "image").
155 156 157 158
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

159 160 161 162 163
            - "image": input image, with shape of (H, W, C)
            - "coords": coordinates, with shape of (N, 2)
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format,

                       the 1st "xy" represents top left point of a box,
164 165 166
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
167

168 169
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
170

L
LielinJiang 已提交
171
    Examples:
172

L
LielinJiang 已提交
173 174 175
        .. code-block:: python

            import numpy as np
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
241 242 243

    """

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
277
            outputs.extend(inputs[len(self.keys):])
278 279 280 281 282 283

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
284

285 286
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
287

288 289
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
290

291 292
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
293

294 295
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
296

297 298 299 300

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
301 302
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

303
    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1).
L
LielinJiang 已提交
304 305 306 307
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

308 309 310
    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr,
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8.
311 312 313 314

    In the other cases, tensors are returned without scaling.

    Args:
315
        data_format (str, optional): Data format of output tensor, should be 'HWC' or
316 317
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
318

319 320 321 322 323 324 325
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

326
    Examples:
327

328 329 330 331 332 333 334 335
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
336
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
337 338 339 340

            transform = T.ToTensor()

            tensor = transform(fake_img)
341

L
Liyulingyue 已提交
342 343
            print(tensor.shape)
            # [3, 4, 5]
344

L
Liyulingyue 已提交
345 346
            print(tensor.dtype)
            # paddle.float32
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
365 366 367 368 369 370 371 372
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
373 374 375 376 377 378 379
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
            when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
380
            - "hamming": Image.HAMMING
381 382 383 384 385
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
386 387
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
388

389 390 391 392 393 394 395
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
396
    Examples:
397

L
LielinJiang 已提交
398 399 400
        .. code-block:: python

            import numpy as np
401
            from PIL import Image
402
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
403

404
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
405

406 407 408 409 410 411 412 413 414
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
415 416
    """

417 418
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
419 420
        assert isinstance(size, int) or (isinstance(size, Iterable)
                                         and len(size) == 2)
L
LielinJiang 已提交
421 422 423
        self.size = size
        self.interpolation = interpolation

424
    def _apply_image(self, img):
L
LielinJiang 已提交
425 426 427
        return F.resize(img, self.size, self.interpolation)


428
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
429 430 431 432 433 434
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
435
        size (int|list|tuple): Target size of output image, with (height, width) shape.
436
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin
437
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
438
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
439 440 441 442 443 444 445
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend,
            support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
446
            - "hamming": Image.HAMMING
447 448 449 450 451
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
452 453
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
454

455 456 457 458 459 460 461
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
462
    Examples:
463

L
LielinJiang 已提交
464 465 466
        .. code-block:: python

            import numpy as np
467
            from PIL import Image
468
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
469 470 471

            transform = RandomResizedCrop(224)

472
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
473 474

            fake_img = transform(fake_img)
475 476
            print(fake_img.size)

L
LielinJiang 已提交
477 478 479
    """

    def __init__(self,
480
                 size,
L
LielinJiang 已提交
481 482
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
483 484 485 486 487
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
488
        else:
489
            self.size = size
L
LielinJiang 已提交
490 491 492 493 494 495
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

496 497
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
498 499 500 501 502 503 504 505 506 507 508
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
509 510 511
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
512 513 514 515 516 517 518 519 520

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
521 522
        else:
            # return whole image
L
LielinJiang 已提交
523 524
            w = width
            h = height
525 526 527
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
528

529 530
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
531

532
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
533 534 535
        return F.resize(cropped_img, self.size, self.interpolation)


536
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
537 538 539
    """Crops the given the input data at the center.

    Args:
540 541 542
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

543 544 545 546 547 548 549
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
550
    Examples:
551

L
LielinJiang 已提交
552 553 554
        .. code-block:: python

            import numpy as np
555
            from PIL import Image
556
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
557 558 559

            transform = CenterCrop(224)

560
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
561 562

            fake_img = transform(fake_img)
563
            print(fake_img.size)
L
LielinJiang 已提交
564 565
    """

566 567 568 569
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
570
        else:
571
            self.size = size
L
LielinJiang 已提交
572

573 574
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
575 576


577
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
578 579 580
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
581
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
582
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
583

584 585 586 587 588 589 590
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
591
    Examples:
592

L
LielinJiang 已提交
593 594 595
        .. code-block:: python

            import numpy as np
596
            from PIL import Image
597
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
598

B
Bin Lu 已提交
599
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
600

601
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
602 603

            fake_img = transform(fake_img)
604
            print(fake_img.size)
L
LielinJiang 已提交
605 606
    """

607 608
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
609
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
610 611
        self.prob = prob

612 613 614
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
615 616 617
        return img


618
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
619 620 621
    """Vertically flip the input data randomly with a given probability.

    Args:
622 623
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
624

625 626 627 628 629 630 631
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
632
    Examples:
633

L
LielinJiang 已提交
634 635 636
        .. code-block:: python

            import numpy as np
637
            from PIL import Image
638
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
639

640
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
641

642
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
643 644

            fake_img = transform(fake_img)
645 646
            print(fake_img.size)

L
LielinJiang 已提交
647 648
    """

649 650
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
651
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
652 653
        self.prob = prob

654 655 656
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
657 658 659
        return img


660
class Normalize(BaseTransform):
L
LielinJiang 已提交
661 662 663 664 665 666
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
667 668
        mean (int|float|list|tuple, optional): Sequence of means for each channel.
        std (int|float|list|tuple, optional): Sequence of standard deviations for each channel.
669
        data_format (str, optional): Data format of img, should be 'HWC' or
670 671 672
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
673 674 675 676 677 678 679 680

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
681
    Examples:
682

L
LielinJiang 已提交
683
        .. code-block:: python
684 685
          :name: code-example
            import paddle
686
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
687

688
            normalize = Normalize(mean=[127.5, 127.5, 127.5],
689 690
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
691

692
            fake_img = paddle.rand([300,320,3]).numpy() * 255.
L
LielinJiang 已提交
693 694 695

            fake_img = normalize(fake_img)
            print(fake_img.shape)
696 697 698
            # (300, 320, 3)
            print(fake_img.max(), fake_img.min())
            # 0.99999905 -0.999974
699

L
LielinJiang 已提交
700 701
    """

702 703 704 705 706 707 708
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
709 710 711 712
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
713
            std = [std, std, std]
L
LielinJiang 已提交
714

715 716 717 718
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
719

720 721 722
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
723 724


725 726
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
727 728
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
729
    output image will be an instance of numpy.ndarray.
L
LielinJiang 已提交
730 731

    Args:
732 733
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
734

735 736
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
737
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input
738 739 740 741 742
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
743
    Examples:
744

L
LielinJiang 已提交
745 746 747
        .. code-block:: python

            import numpy as np
748 749
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
750

751
            transform = Transpose()
L
LielinJiang 已提交
752

753
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
754 755 756

            fake_img = transform(fake_img)
            print(fake_img.shape)
757

L
LielinJiang 已提交
758 759
    """

760 761 762 763 764
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
765 766 767
        if F._is_tensor_image(img):
            return img.transpose(self.order)

768 769
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
770

771 772
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
773
        return img.transpose(self.order)
L
LielinJiang 已提交
774 775


776
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
777 778 779 780 781
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
782
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
783

784 785 786 787 788 789 790
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
791
    Examples:
792

L
LielinJiang 已提交
793 794 795
        .. code-block:: python

            import numpy as np
796
            from PIL import Image
797
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
798 799 800

            transform = BrightnessTransform(0.4)

801
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
802 803

            fake_img = transform(fake_img)
804

L
LielinJiang 已提交
805 806
    """

807 808 809
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
810

811 812
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
813 814
            return img

815 816
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
817 818


819
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
820 821 822 823 824
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
825
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
826

827 828 829 830 831 832 833
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
834
    Examples:
835

L
LielinJiang 已提交
836 837 838
        .. code-block:: python

            import numpy as np
839
            from PIL import Image
840
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
841 842 843

            transform = ContrastTransform(0.4)

844
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
845 846

            fake_img = transform(fake_img)
847

L
LielinJiang 已提交
848 849
    """

850 851
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
852 853
        if value < 0:
            raise ValueError("contrast value should be non-negative")
854
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
855

856 857
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
858 859
            return img

860 861
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
862 863


864
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
865 866 867 868 869
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
870
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
871

872 873 874 875 876 877 878
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
879
    Examples:
880

L
LielinJiang 已提交
881 882 883
        .. code-block:: python

            import numpy as np
884
            from PIL import Image
885
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
886 887 888

            transform = SaturationTransform(0.4)

889
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
890

L
LielinJiang 已提交
891
            fake_img = transform(fake_img)
892

L
LielinJiang 已提交
893 894
    """

895 896 897
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
898

899 900
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
901 902
            return img

903 904
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
905

L
LielinJiang 已提交
906

907
class HueTransform(BaseTransform):
L
LielinJiang 已提交
908 909 910 911 912
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
913
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
914

915 916 917 918 919 920 921
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
922
    Examples:
923

L
LielinJiang 已提交
924 925 926
        .. code-block:: python

            import numpy as np
927
            from PIL import Image
928
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
929 930 931

            transform = HueTransform(0.4)

932
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
933 934

            fake_img = transform(fake_img)
935

L
LielinJiang 已提交
936 937
    """

938 939
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
940 941 942 943 944
        self.value = _check_input(value,
                                  'hue',
                                  center=0,
                                  bound=(-0.5, 0.5),
                                  clip_first_on_zero=False)
L
LielinJiang 已提交
945

946 947
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
948 949
            return img

950 951
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
952 953


954
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
955 956 957
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
958
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
959
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
960
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
961
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
962
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
963
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
964
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
965
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
966
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
967

968 969 970 971 972 973 974
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
975
    Examples:
976

L
LielinJiang 已提交
977 978 979
        .. code-block:: python

            import numpy as np
980
            from PIL import Image
981
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
982

983
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
984

985
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
986 987

            fake_img = transform(fake_img)
988

L
LielinJiang 已提交
989 990
    """

991 992 993 994 995
    def __init__(self,
                 brightness=0,
                 contrast=0,
                 saturation=0,
                 hue=0,
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
1012
        transforms = []
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1025 1026

        random.shuffle(transforms)
1027
        transform = Compose(transforms)
L
LielinJiang 已提交
1028

1029
        return transform
L
LielinJiang 已提交
1030

1031 1032 1033 1034
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1045 1046 1047 1048 1049 1050
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
1051
        padding (int|sequence, optional): Optional padding on each border
1052
            of the image. If a sequence of length 4 is provided, it is used to pad left,
1053 1054
            top, right, bottom borders respectively. Default: None, without padding.
        pad_if_needed (boolean, optional): It will pad the image if smaller than the
L
LielinJiang 已提交
1055
            desired size to avoid raising an exception. Default: False.
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        fill (float|tuple, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0.
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                   padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                   will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                     padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                     will result in [2, 1, 1, 2, 3, 4, 4, 3]
1074
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1075

1076
    Shape
1077 1078 1079 1080 1081 1082
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1083
    Examples:
1084

L
LielinJiang 已提交
1085
        .. code-block:: python
1086
          :name: code-example1
L
LielinJiang 已提交
1087

1088
            import paddle
1089
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1090 1091
            transform = RandomCrop(224)

1092 1093
            fake_img = paddle.randint(0, 255, shape=(3, 324,300), dtype = 'int32')
            print(fake_img.shape) # [3, 324, 300]
L
LielinJiang 已提交
1094

1095 1096
            crop_img = transform(fake_img)
            print(crop_img.shape) # [3, 224, 224]
L
LielinJiang 已提交
1097 1098
    """

1099 1100 1101 1102 1103 1104 1105 1106
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1107 1108 1109 1110 1111 1112
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1113 1114
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1115

1116
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1117 1118 1119
        """Get parameters for ``crop`` for a random crop.

        Args:
1120
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1121 1122 1123 1124 1125
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1126
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1127 1128 1129 1130
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1131 1132
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1133 1134
        return i, j, th, tw

1135
    def _apply_image(self, img):
L
LielinJiang 已提交
1136 1137
        """
        Args:
1138
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1139

1140 1141
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1142
        """
1143 1144 1145 1146
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1147 1148

        # pad the width if needed
1149 1150 1151
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1152
        # pad the height if needed
1153 1154 1155
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1156

1157
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1158

1159
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1160 1161


1162
class Pad(BaseTransform):
L
LielinJiang 已提交
1163 1164 1165 1166
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1167 1168
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1169 1170
            this is the padding for the left, top, right and bottom borders
            respectively.
1171
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1172 1173 1174
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
1175 1176 1177 1178
            ``constant`` means pads with a constant value, this value is specified with fill.
            ``edge`` means pads with the last value at the edge of the image.
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
L
LielinJiang 已提交
1179 1180
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
1181
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
L
LielinJiang 已提交
1182
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1183
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1184

1185 1186 1187 1188 1189 1190 1191
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1192
    Examples:
1193

L
LielinJiang 已提交
1194 1195 1196
        .. code-block:: python

            import numpy as np
1197
            from PIL import Image
1198
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1199 1200 1201

            transform = Pad(2)

1202
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1203 1204

            fake_img = transform(fake_img)
1205
            print(fake_img.size)
L
LielinJiang 已提交
1206 1207
    """

1208
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1209 1210 1211
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1212 1213 1214 1215 1216 1217 1218

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1219 1220 1221 1222
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1223
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1224 1225 1226 1227
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1228
    def _apply_image(self, img):
L
LielinJiang 已提交
1229 1230
        """
        Args:
1231 1232
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1233
        Returns:
1234
            PIL Image: Padded image.
L
LielinJiang 已提交
1235 1236 1237 1238
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join(
        [str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError(f"{name} should be a sequence of length {msg}.")
    if len(x) not in req_sizes:
        raise ValueError(f"{name} should be sequence of length {msg}.")


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError(
                f"If {name} is a single number, it must be positive.")
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]


class RandomAffine(BaseTransform):
    """Random affine transformation of the image.

    Args:
        degrees (int|float|tuple): The angle interval of the random rotation.
            If set as a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate.
        translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations.
            For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a
1269
            and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b.
1270
            Default is None, will not translate.
1271
        scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b.
1272 1273
            Default is None, will keep original scale and not scale.
        shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order.
1274 1275
            If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied.
            Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied.
1276 1277
            Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Default is None, will not apply shear.
1278 1279 1280 1281 1282 1283
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend.
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1284
            - "bicubic": Image.BICUBIC
1285 1286 1287
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        center (2-tuple, optional): Optional center of rotation, (x, y).
            Origin is the upper left corner.
            Default is the center of the image.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image.

    Returns:
        A callable object of RandomAffine.

    Examples:
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomAffine

            transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10])

            fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 degrees,
                 translate=None,
                 scale=None,
                 shear=None,
                 interpolation='nearest',
                 fill=0,
                 center=None,
                 keys=None):
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))

        super(RandomAffine, self).__init__(keys)
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        self.interpolation = interpolation

        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
                        "translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")
        self.fill = fill

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2, ))
        self.center = center

    def _get_param(self,
                   img_size,
                   degrees,
                   translate=None,
                   scale_ranges=None,
                   shears=None):
        """Get parameters for affine transformation

        Returns:
            params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])

        if translate is not None:
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(random.uniform(-max_dx, max_dx))
            ty = int(random.uniform(-max_dy, max_dy))
            translations = (tx, ty)
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        shear_x, shear_y = 0.0, 0.0
        if shears is not None:
            shear_x = random.uniform(shears[0], shears[1])
            if len(shears) == 4:
                shear_y = random.uniform(shears[2], shears[3])
        shear = (shear_x, shear_y)

        return angle, translations, scale, shear

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array): Image to be affine transformed.

        Returns:
            PIL.Image or np.array: Affine transformed image.
        """

        w, h = _get_image_size(img)
        img_size = [w, h]

        ret = self._get_param(img_size, self.degrees, self.translate,
                              self.scale, self.shear)

1414 1415 1416 1417 1418
        return F.affine(img,
                        *ret,
                        interpolation=self.interpolation,
                        fill=self.fill,
                        center=self.center)
1419 1420


1421
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1422 1423 1424 1425 1426 1427
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1428 1429 1430 1431 1432
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend. when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1433
            - "bicubic": Image.BICUBIC
1434 1435 1436
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1437
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1438 1439 1440 1441 1442 1443 1444
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1445
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1446

1447 1448 1449 1450 1451 1452 1453
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1454
    Examples:
1455

L
LielinJiang 已提交
1456 1457 1458
        .. code-block:: python

            import numpy as np
1459 1460
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1461

1462
            transform = RandomRotation(90)
L
LielinJiang 已提交
1463

1464
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1465 1466

            fake_img = transform(fake_img)
1467
            print(fake_img.size)
L
LielinJiang 已提交
1468 1469
    """

1470 1471
    def __init__(self,
                 degrees,
1472
                 interpolation='nearest',
1473 1474 1475 1476
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1488
        super(RandomRotation, self).__init__(keys)
1489
        self.interpolation = interpolation
L
LielinJiang 已提交
1490 1491
        self.expand = expand
        self.center = center
1492
        self.fill = fill
L
LielinJiang 已提交
1493

1494
    def _get_param(self, degrees):
L
LielinJiang 已提交
1495 1496 1497 1498
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1499
    def _apply_image(self, img):
L
LielinJiang 已提交
1500
        """
1501 1502 1503
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1504
        Returns:
1505
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1506 1507
        """

1508
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1509

1510 1511
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1512 1513


1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
class RandomPerspective(BaseTransform):
    """Random perspective transformation with a given probability.

    Args:
        prob (float, optional): Probability of using transformation, ranges from
            0 to 1, default is 0.5.
        distortion_scale (float, optional): Degree of distortion, ranges from
            0 to 1, default is 0.5.
        interpolation (str, optional): Interpolation method. If omitted, or if
            the image has only one channel, it is set to PIL.Image.NEAREST or
            cv2.INTER_NEAREST.
1525 1526 1527
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1528
            - "bicubic": Image.BICUBIC
1529 1530 1531
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A perspectived image.

    Returns:
        A callable object of RandomPerspective.

    Examples:
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomPerspective

            transform = RandomPerspective(prob=1.0, distortion_scale=0.9)

            fake_img = paddle.randn((3, 200, 150)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 prob=0.5,
                 distortion_scale=0.5,
                 interpolation='nearest',
                 fill=0,
                 keys=None):
        super(RandomPerspective, self).__init__(keys)
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
        assert 0 <= distortion_scale <= 1, "distortion_scale must be between 0 and 1"
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        assert isinstance(fill, (numbers.Number, str, list, tuple))

        self.prob = prob
        self.distortion_scale = distortion_scale
        self.interpolation = interpolation
        self.fill = fill

    def get_params(self, width, height, distortion_scale):
        """
        Returns:
            startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image,
            endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = height // 2
        half_width = width // 2
        topleft = [
1585 1586 1587 1588
            int(random.uniform(0,
                               int(distortion_scale * half_width) + 1)),
            int(random.uniform(0,
                               int(distortion_scale * half_height) + 1)),
1589 1590 1591 1592 1593
        ]
        topright = [
            int(
                random.uniform(width - int(distortion_scale * half_width) - 1,
                               width)),
1594 1595
            int(random.uniform(0,
                               int(distortion_scale * half_height) + 1)),
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        ]
        botright = [
            int(
                random.uniform(width - int(distortion_scale * half_width) - 1,
                               width)),
            int(
                random.uniform(height - int(distortion_scale * half_height) - 1,
                               height)),
        ]
        botleft = [
1606 1607
            int(random.uniform(0,
                               int(distortion_scale * half_width) + 1)),
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
            int(
                random.uniform(height - int(distortion_scale * half_height) - 1,
                               height)),
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1],
                       [0, height - 1]]
        endpoints = [topleft, topright, botright, botleft]

        return startpoints, endpoints

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array|paddle.Tensor): Image to be Perspectively transformed.

        Returns:
            PIL.Image|np.array|paddle.Tensor: Perspectively transformed image.
        """

        width, height = _get_image_size(img)

        if random.random() < self.prob:
            startpoints, endpoints = self.get_params(width, height,
                                                     self.distortion_scale)
            return F.perspective(img, startpoints, endpoints,
                                 self.interpolation, self.fill)
        return img


1637
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1638 1639 1640
    """Converts image to grayscale.

    Args:
1641 1642
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1643 1644 1645

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
1646
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image.
1647 1648 1649
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1650
    Returns:
1651
        A callable object of Grayscale.
L
LielinJiang 已提交
1652 1653

    Examples:
1654

L
LielinJiang 已提交
1655 1656 1657
        .. code-block:: python

            import numpy as np
1658
            from PIL import Image
1659
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1660 1661 1662

            transform = Grayscale()

1663
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1664 1665

            fake_img = transform(fake_img)
1666
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1667 1668
    """

1669 1670 1671
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1672

1673
    def _apply_image(self, img):
L
LielinJiang 已提交
1674 1675
        """
        Args:
1676 1677
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1678
        Returns:
1679
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1680
        """
1681
        return F.to_grayscale(img, self.num_output_channels)
1682 1683 1684 1685 1686 1687 1688


class RandomErasing(BaseTransform):
    """Erase the pixels in a rectangle region selected randomly.

    Args:
        prob (float, optional): Probability of the input data being erased. Default: 0.5.
1689
        scale (sequence, optional): The proportional range of the erased area to the input image.
1690 1691 1692
                                    Default: (0.02, 0.33).
        ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3).
        value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with.
1693 1694 1695
                               If value is a single number, all pixels will be erased with this value.
                               If value is a sequence with length 3, the R, G, B channels will be ereased
                               respectively. If value is set to "random", each pixel will be erased with
1696 1697 1698
                               random values. Default: 0.
        inplace (bool, optional): Whether this transform is inplace. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1699

1700
    Shape:
1701
        - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W).
1702 1703 1704 1705 1706 1707 1708
                 For np.array input, the shape should be (H, W, C).
        - output(paddle.Tensor | np.array | PIL.Image): A random erased image.

    Returns:
        A callable object of RandomErasing.

    Examples:
1709

1710 1711 1712
        .. code-block:: python

            import paddle
1713

1714 1715
            fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
            transform = paddle.vision.transforms.RandomErasing()
J
JYChen 已提交
1716 1717 1718
            result = transform(fake_img)

            print(result)
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    """

    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.33),
                 ratio=(0.3, 3.3),
                 value=0,
                 inplace=False,
                 keys=None):
        super(RandomErasing, self).__init__(keys)
        assert isinstance(scale,
                          (tuple, list)), "scale should be a tuple or list"
        assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
                ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(ratio,
                          (tuple, list)), "ratio should be a tuple or list"
1735 1736 1737 1738
        assert (ratio[0] >= 0
                and ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        assert (prob >= 0
                and prob <= 1), "The probability should be in range [0, 1]"
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        assert isinstance(
            value, (numbers.Number, str, tuple,
                    list)), "value should be a number, tuple, list or str"
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")

        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _get_param(self, img, scale, ratio, value):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
1756
            scale (sequence, optional): The proportional range of the erased area to the input image.
1757 1758
            ratio (sequence, optional): Aspect ratio range of the erased area.
            value (sequence | None): The value each pixel in erased area will be replaced with.
1759
                               If value is a sequence with length 3, the R, G, B channels will be ereased
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
                               respectively. If value is None, each pixel will be erased with random values.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
        """
        if F._is_pil_image(img):
            shape = np.asarray(img).astype(np.uint8).shape
            h, w, c = shape[-3], shape[-2], shape[-1]
        elif F._is_numpy_image(img):
            h, w, c = img.shape[-3], img.shape[-2], img.shape[-1]
        elif F._is_tensor_image(img):
            c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]

        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(10):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue
            if F._is_tensor_image(img):
                if value is None:
1784 1785
                    v = paddle.normal(shape=[c, erase_h, erase_w]).astype(
                        img.dtype)
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
                else:
                    v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None]
            else:
                if value is None:
                    v = np.random.normal(size=[erase_h, erase_w, c]) * 255
                else:
                    v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)

            return top, left, erase_h, erase_w, v

        return 0, 0, h, w, img

    def _apply_image(self, img):
        """
        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.

        Returns:
            output (paddle.Tensor np.array | PIL.Image): A random erased image.
        """

        if random.random() < self.prob:
            if isinstance(self.value, numbers.Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
1820 1821
            top, left, erase_h, erase_w, v = self._get_param(
                img, self.scale, self.ratio, value)
1822 1823
            return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
        return img