quantization_pass.py 128.3 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17 18 19 20
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
21
from ..... import compat as cpt
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
32
from ....framework import _get_paddle_place
33
from . import utils
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
    'AddQuantDequantForInferencePass',
48
]
W
WangZhen 已提交
49

50 51 52 53 54 55 56 57 58
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

59
_fake_quant_dequant_op_list = [
60 61
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
62 63
]

64 65
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

66
_SCALE_DEFAULT_VALUE = 0.001
67 68


69 70 71 72
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
73
        'The scope cannot be set None.'
74
    assert place is not None, \
75
        'The place cannot be set None.'
76 77 78 79
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


80 81 82 83 84
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
85
    for var_name in utils._get_op_input_var_names(op_node):
86 87 88
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
89 90 91
    return is_input_all_not_persistable


92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


106
class QuantizationTransformPass(object):
107
    """
108 109
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
110
    """
111

W
WangZhen 已提交
112
    def __init__(self,
113
                 scope=None,
114
                 place=None,
W
WangZhen 已提交
115 116 117 118
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
119
                 window_size=10000,
120
                 moving_rate=0.9,
121
                 skip_pattern=['skip_quant'],
122 123 124 125 126 127
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
128 129
                 executor=None,
                 is_test=None):
130
        r"""
131
        Constructor.
132

W
WangZhen 已提交
133
        Args:
134
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
135 136
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
137 138 139
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
140
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
141
                the bias is not quantized.
142 143
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
144 145 146 147 148
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
149
            weight_quantize_type(str): quantization type for weights,
150 151 152
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
153 154
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
155
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
156
                will be presented in the name scope of an op. When the skip pattern is
157
                detected in an op's name scope, the corresponding op will not be quantized. 
158
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
159 160
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
188 189
                Default is None.

190

W
WangZhen 已提交
191 192
        Examples:
        .. code-block:: python
193 194 195 196
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
197
            from paddle.fluid.contrib.slim.graph import IrGraph
198 199
            from paddle.fluid import core

200
            graph = IrGraph(core.Graph(program.desc), for_test=False)
201
            place = fluid.CPUPlace()
202
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
203
            place)
204
            transform_pass.apply(graph)
W
WangZhen 已提交
205
        """
206
        self._scope = scope
207
        self._place = _get_paddle_place(place)
208 209
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
210
        self._skip_pattern = skip_pattern
211 212 213 214 215 216
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
217 218 219 220
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
221 222
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
223 224
        if activation_quantize_type not in quant_type:
            raise ValueError(
225 226 227
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
228 229
        if weight_quantize_type not in quant_type:
            raise ValueError(
230
                "Unknown weight_quantize_type: '%s'. It can only be "
231 232
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
233

234 235 236
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
237
        self._moving_rate = moving_rate
W
WangZhen 已提交
238

239 240
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
241
            assert op in utils._weight_supported_quantizable_op_type, \
242
                op + " is not supported for quantization."
243 244
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
245
        ]
246
        self._is_test = is_test
247
        self._global_step = None
W
WangZhen 已提交
248

249 250 251
        self.create_var_map = {}
        self.create_op_map = {}

252
    def apply(self, graph):
253 254 255 256 257 258 259
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
260 261
        Returns:
            None
262
        """
W
WangZhen 已提交
263
        assert isinstance(graph,
264
                          IrGraph), 'graph must be the instance of IrGraph.'
265 266
        if self._is_test is None:
            self._is_test = graph.is_test()
W
WangZhen 已提交
267 268
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
269
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
270
        processed_vars = []
W
WangZhen 已提交
271

272
        def _quant_preprocess(op_node):
273 274 275
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
276 277
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
278 279
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
280 281
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
282

283
            if user_skipped:
284
                op_node.op()._set_attr("skip_quant", True)
285
                op_node.op()._set_attr("with_quant_attr", True)
286

W
WangZhen 已提交
287
        def _transform_forward(graph, op):
288
            op.op()._set_attr("quantization_type", "qat_with_weight")
289
            op.op()._set_attr("with_quant_attr", True)
290 291
            inputs = op.inputs
            for var_node in inputs:
292 293
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
294 295 296
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
297 298 299
                    name = var_node.name()
                    if name in processed_vars:
                        continue
300 301
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
302 303

                    # if var node is weight and weight_preprocess_func is not None,
304
                    # will insert weight preprocess func
305
                    # to preorocess weight before quantization
306 307
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
308 309 310 311 312
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
313 314 315
                        var_node = self._insert_func(graph,
                                                     self._act_preprocess_func,
                                                     var_node, op)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
332
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
333
                        else self._activation_bits
334 335
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
336 337
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
338
                            utils._channelwise_quant_axis1_ops else 0
339 340 341 342 343
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
344 345
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
346
                            graph, var_node, name, quant_bits, quant_type)
347 348
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
349
                    dequantized_vars[name] = dequant_var_node
350
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
351 352 353

        def _transform_backward(graph, op):
            for var_node in op.inputs:
354 355
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
356 357
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
358
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
359

X
XGZhang 已提交
360 361 362 363 364 365 366 367 368 369
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

370
        if not self._is_test:
W
WangZhen 已提交
371
            self._create_global_step(graph)
372
        ops = graph.all_op_nodes()
373 374 375 376 377 378
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
379 380
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
381 382
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
383 384 385 386 387 388 389 390 391
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
392 393
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
394
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
395
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
396
        graph.resolve_hazard()
397
        return graph
W
WangZhen 已提交
398

W
WangZhen 已提交
399
    def _create_global_step(self, graph):
400 401
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
402
            counter_name = cpt.to_text('@STEP_COUNTER@')
403
            for node in graph.all_var_nodes():
W
WangZhen 已提交
404
                if node.name() == counter_name:
405 406
                    self._global_step = node
            if self._global_step is None:
407
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
408 409 410 411
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
412 413
                _init_var_node(global_step_in, np.zeros([1], dtype='int64'),
                               self._scope, self._place)
W
WangZhen 已提交
414 415
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
416
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
417 418
                increment_op = graph.create_op_node(
                    op_type='increment',
419 420 421 422 423
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
424 425
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
426 427 428
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
429

430
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
431 432 433 434
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
435 436
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
437
        elif quant_type == 'range_abs_max':
438
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
439
                                                       quant_bits)
440
        elif quant_type == 'moving_average_abs_max':
441 442
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
443

444
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
445 446 447 448 449 450
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
451
            name=self._quantized_var_name(name),
452 453 454
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
455 456 457 458 459 460 461 462
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.zeros([1], dtype=data_type)
463
        scale_var_node = graph.create_persistable_node(
464
            name=scale_name,
465
            var_type=var_node.type(),
466
            shape=[1],
467
            var_dtype=var_node.dtype())
468 469
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)

W
WangZhen 已提交
470 471
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
472 473 474 475
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
476
            inputs={'X': var_node},
477 478 479 480
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
481 482 483
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
484 485
        return quant_var_node, scale_var_node

486
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
487 488 489 490 491 492
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
493
            name=self._quantized_var_name(name),
494 495 496
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
497

498 499 500 501 502 503 504 505
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
506
        scale_in_node = graph.create_persistable_node(
507
            name=scale_name,
W
WangZhen 已提交
508 509
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
510
            var_dtype=var_node.dtype())
511
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
W
WangZhen 已提交
512 513 514 515 516

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

517
        if not self._is_test:
W
WangZhen 已提交
518
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
519
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
520 521
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
522
                shape=[self._window_size],
523
                var_dtype=var_node.dtype())
524 525
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
526 527 528
            _init_var_node(scales_node,
                           np.zeros([self._window_size], dtype=data_type),
                           self._scope, self._place)
529

530
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
531 532
            outputs['OutScales'] = scales_node
        attrs = {
533
            'window_size': self._window_size,
W
WangZhen 已提交
534
            'bit_length': quant_bits,
535 536
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
537 538 539 540 541 542 543
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

544 545 546 547
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
548

549 550 551
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
552 553 554

        return quant_var_node, scale_out_node

555
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
556 557 558 559
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
560
            name=self._quantized_var_name(name),
561 562 563
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
564 565 566 567 568 569 570 571
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
572
        scale_in_node = graph.create_persistable_node(
573
            name=scale_name,
574 575 576
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
577
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
578 579 580 581 582 583 584 585 586 587

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
588 589
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
590 591
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
592 593 594 595 596
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
597 598 599 600 601 602
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

635 636
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
637 638 639 640 641 642
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
643
            name=self._quantized_var_name(name),
644 645 646
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
647 648 649 650 651 652 653 654 655
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.zeros([var_node.shape()[quant_axis]],
                                   dtype=data_type)
656
        scale_var_node = graph.create_persistable_node(
657
            name=self._quantized_scale_name(name),
658
            var_type=var_node.type(),
659
            shape=[var_node.shape()[quant_axis]],
660
            var_dtype=var_node.dtype())
661
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)
662 663 664 665
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
666
                'quant_axis': quant_axis,
667
                'is_test': self._is_test,
668 669 670
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
671 672 673 674
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
675 676 677 678 679
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
680 681 682 683 684 685 686 687
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
688 689 690
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
691 692 693
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
694 695 696 697
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
698 699 700 701
            inputs={
                'X': var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
702
            outputs={'Out': dequant_var_node})
703 704 705
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
706 707
        return dequant_var_node

708
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
709
                                   quant_bits, quant_axis):
710 711 712 713 714 715 716 717 718 719 720 721 722 723
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
724
                'quant_axis': quant_axis,
725 726
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
727 728 729 730
            inputs={
                'X': var_node,
                'Scales': scale_var_nodes
            },
731 732 733 734 735 736 737
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
818 819 820
                in_node = data(var_node.name() + '_tmp_input',
                               shape=var_node.shape(),
                               dtype='float32')
821
                out_node = func(in_node)
822
                graph.out_node_mapping_table[out_node.name] = var_node.name()
823 824 825 826 827 828 829 830 831 832
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

833 834
        tmp_graph = IrGraph(core.Graph(tmp_program.desc),
                            for_test=graph._for_test)
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
875 876
                graph.all_var_nodes(),
                target_out_node.name() + "@GRAD")
877
            in_node_grad = graph._find_node_by_name(
878 879
                graph.all_var_nodes(),
                target_in_node.name() + "@GRAD")
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
928
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
929
        """
H
handiz 已提交
930
        return "%s@scale" % (var_name)
W
WangZhen 已提交
931

932
    def _is_skip_quant(self, graph, op_node):
933 934 935 936 937 938 939 940 941 942 943 944
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
945 946 947
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
948 949
        return is_skip

W
WangZhen 已提交
950 951

class QuantizationFreezePass(object):
952

W
WangZhen 已提交
953 954 955
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
956
                 bias_correction=False,
W
WangZhen 已提交
957 958
                 weight_bits=8,
                 activation_bits=8,
959
                 round_type='round',
960
                 weight_quantize_type='abs_max',
961
                 quantizable_op_type=None):
962 963
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
964
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
965
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
966 967
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
968 969 970

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
971 972
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
973 974
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
975 976
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
977
            round_type(str, optional): The method of converting the quantized weights
978 979 980
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
981 982 983
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
984 985
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
986
        """
W
WangZhen 已提交
987 988 989 990 991
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
992
        self._bias_correction = bias_correction
993
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
994 995
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
996
        self._round_type = round_type
W
WangZhen 已提交
997
        self._weight_quantize_type = weight_quantize_type
998 999
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1000 1001
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1002
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1003 1004

    def apply(self, graph):
1005 1006 1007 1008 1009
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1010 1011
        Returns:
            None
1012
        """
1013
        # Get input scales in fake quant op and process weights
1014 1015
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1016 1017 1018
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1019
                input_arg_name = op_node.input('X')[0]
1020 1021 1022 1023
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1024 1025
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1026 1027
                        op_node.outputs,
                        op_node.output('OutScale')[0])
1028 1029 1030 1031 1032 1033 1034 1035 1036
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1037
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1038
                        scale_v = scale_v[0]
W
WangZhen 已提交
1039
                    else:
1040
                        scale_v = scale_v.tolist()
1041
                    self._quant_var_scale_map[input_arg_name] = scale_v
1042
                    # Quantize weight and restore
1043
                    if self._round_type == 'round':
1044
                        param_v = self._load_var(input_arg_name)
1045 1046
                        if any(
                                _check_grandchild_op_node(op_node, op)
1047
                                for op in utils._channelwise_quant_axis1_ops):
1048 1049 1050
                            quant_axis = 1
                        else:
                            quant_axis = 0
1051 1052
                        quantized_param_v = utils.quant_tensor(
                            param_v.copy(), scale_v, quant_axis,
1053 1054
                            self._weight_bits)
                        quantized_param_v = np.round(quantized_param_v)
1055
                        # Weight bias correction
1056
                        if self._bias_correction == True:
1057 1058 1059 1060 1061 1062
                            quantized_param_v = utils.bias_correction_w(
                                param_v,
                                quantized_param_v,
                                scale_v,
                                quant_axis,
                                weight_bits=self._weight_bits)
1063
                            quantized_param_v = np.round(quantized_param_v)
1064
                        self._restore_var(input_arg_name, quantized_param_v)
1065
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1066

1067
        # Remove all fake dequant op
1068
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1069 1070 1071 1072 1073
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1074
        # Insert post dequant op
1075
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1076
        for op_node in ops:
1077 1078 1079
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1080
                if self._weight_quantize_type == 'channel_wise_abs_max':
1081
                    quant_axis = 1 if op_node.name() in \
1082
                        utils._channelwise_quant_axis1_ops else 0
1083 1084
                    self._insert_post_channel_dequant_op(
                        graph, op_node, quant_axis)
1085 1086
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1087

1088
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1089 1090
        for op_node in ops:
            for var_node in op_node.inputs:
1091 1092 1093
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1094 1095 1096 1097
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1098
        graph.resolve_hazard()
1099
        return graph
W
WangZhen 已提交
1100 1101

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1102 1103
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1104 1105
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1106
        else:
1107 1108
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1109
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1110

1111
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1112 1113 1114
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1115 1116 1117 1118 1119
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1120 1121 1122
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1123
            scale_v = self._quant_var_scale_map[original_var_name]
1124 1125 1126 1127 1128 1129 1130 1131
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1132
                scale_var_node = self._quant_var_scale_map[original_var_name]
1133

1134
        if len(op_node.output_arg_names()) != 1:
1135 1136 1137
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1138
        output_var_node = graph._find_node_by_name(
1139 1140
            op_node.outputs,
            op_node.output_arg_names()[0])
1141 1142 1143 1144 1145
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1146 1147
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1148 1149
        _init_var_node(weight_scale_node, channel_scale.astype(data_type),
                       self._scope, self._place)
1150 1151 1152 1153 1154
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1155 1156 1157
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1158 1159
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1160 1161 1162 1163
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1164
                'quant_axis': quant_axis,
1165 1166
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1177
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1178 1179
        return dequant_var_node

W
WangZhen 已提交
1180
    def _insert_post_dequant_op(self, graph, op_node):
1181
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1182 1183 1184
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1185
        for var_node in op_node.inputs:
W
WangZhen 已提交
1186
            name = var_node.name()
1187 1188 1189 1190 1191
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1192
                new_in.clear_outputs()
W
WangZhen 已提交
1193 1194
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1195
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1196 1197 1198 1199
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1200
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1201
                max_range *= param_range / scale_v
W
WangZhen 已提交
1202
            else:
1203
                max_range *= act_range
1204
                assert isinstance(scale_v, IrNode)
1205
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1206

1207
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1208 1209 1210
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1211
        output_var_node = graph._find_node_by_name(
1212 1213
            op_node.outputs,
            op_node.output_arg_names()[0])
W
WangZhen 已提交
1214 1215
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1216 1217 1218
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1219 1220
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1221 1222 1223 1224
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
1225 1226 1227 1228
            inputs={
                'X': output_var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
1229 1230 1231 1232
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1233
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1234 1235 1236 1237 1238
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1239 1240 1241
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1242 1243 1244

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1245
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1246 1247 1248 1249 1250 1251
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1252 1253 1254 1255 1256 1257
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
H
handiz 已提交
1270 1271
        if var_name.endswith('@scale'):
            return var_name[:-len('@scale')]
W
WangZhen 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1281
    def _is_float(self, v):
W
WangZhen 已提交
1282 1283 1284
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1285 1286

class ConvertToInt8Pass(object):
1287

1288
    def __init__(self, scope, place, quantizable_op_type=None):
1289 1290 1291 1292 1293
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1294 1295 1296
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1297 1298
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1299
        """
1300 1301 1302 1303 1304
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1305
        self._place = _get_paddle_place(place)
1306 1307

    def apply(self, graph):
1308
        """
T
tianshuo78520a 已提交
1309 1310
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1311 1312 1313

        Args:
            graph(IrGraph): the applied graph.
1314 1315
        Returns:
            None
1316
        """
1317 1318
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1319 1320
        input_map = {}
        for op_node in ops:
1321 1322
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1323 1324 1325 1326
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1327 1328
                            int8_var_node = self._convert_to_int8(
                                graph, var_node)
1329 1330 1331 1332 1333 1334
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1335
        graph.resolve_hazard()
1336 1337 1338 1339
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1340
        int8_var_node = graph.create_persistable_node(
1341
            name=cpt.to_text(int8_var_node_name),
1342 1343
            var_type=var_node.type(),
            shape=var_node.shape(),
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1359
        ops = graph.all_op_nodes()
1360 1361 1362 1363 1364 1365
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1366 1367 1368 1369 1370 1371
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1372 1373 1374 1375
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
1376

1377
    def __init__(self):
1378
        """
T
tianshuo78520a 已提交
1379
        This pass is used to convert the frozen graph for paddle-mobile execution.
1380
        """
1381 1382
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1383 1384

    def apply(self, graph):
1385 1386 1387 1388 1389 1390 1391
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1392 1393
        Returns:
            None
1394
        """
1395
        ops = graph.all_op_nodes()
1396 1397 1398
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1399
                op_node.set_type('quantize')
1400 1401 1402 1403 1404 1405 1406
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1407
                op_node.set_type('dequantize')
1408 1409 1410 1411 1412 1413
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1414
        graph.resolve_hazard()
1415
        return graph
1416 1417


1418
class OutScaleForTrainingPass(object):
1419

1420 1421 1422 1423 1424 1425
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 is_test=None,
                 scale_dict=None):
1426 1427 1428 1429 1430 1431
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1432 1433 1434
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1435 1436 1437
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1438
        self._place = _get_paddle_place(place)
1439
        self._moving_rate = moving_rate
1440
        self._is_test = is_test
1441
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1442
        self._scale_dict = scale_dict
1443 1444 1445 1446 1447 1448 1449 1450 1451

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1452 1453
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1454 1455
        if self._is_test is None:
            self._is_test = graph.is_test()
1456 1457 1458 1459
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        with tqdm(total=len(target_ops),
                  bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
                    in_node = graph._find_node_by_name(op.outputs,
                                                       output_var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
1470

1471 1472
                    data_type = 'float64' if in_node.dtype() \
                        == core.VarDesc.VarType.FP64 else 'float32'
1473
                    try:
1474
                        graph._find_node_by_name(
1475 1476
                            graph.all_var_nodes(),
                            self._scale_name(in_node.name()))
1477
                        continue
1478 1479 1480 1481 1482 1483
                    except:
                        scale_node = graph.create_persistable_node(
                            name=self._scale_name(in_node.name()),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            shape=[1],
                            var_dtype=in_node.dtype())
1484 1485 1486 1487 1488 1489 1490 1491
                        if self._scale_dict is not None:
                            try:
                                scale_value = np.array(
                                    [self._scale_dict[in_node.name()]])
                            except:
                                scale_value = np.ones([1], dtype=data_type)
                        else:
                            scale_value = np.ones([1], dtype=data_type)
1492 1493
                    _init_var_node(scale_node, scale_value, self._scope,
                                   self._place)
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(state_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(accum_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        state_out_node = graph.create_var_node_from_desc(
                            state_in_node.var())
                        accum_out_node = graph.create_var_node_from_desc(
                            accum_in_node.var())

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
                        outputs=outs)
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1543 1544 1545 1546 1547 1548
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1549
        return "%s@scale" % (var_name)
1550 1551


1552
class OutScaleForInferencePass(object):
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1563
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1564 1565 1566 1567 1568 1569 1570 1571 1572

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1573 1574
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1575 1576 1577
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1578
                var_names = utils._get_op_output_var_names(op_node)
1579
                for var_name in var_names:
1580 1581 1582 1583 1584 1585
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1586
                    scale_name = self._scale_name(var_name)
1587 1588 1589 1590 1591 1592 1593
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1594

1595 1596
                    argname_index = utils._get_output_name_index(
                        op_node, var_name)
1597 1598 1599
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1600
                        + "_threshold", float(scale_value))
1601
                    op_node.op()._set_attr("with_quant_attr", True)
1602 1603 1604 1605 1606 1607 1608
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1609
        return "%s@scale" % (var_name)
1610 1611 1612


class AddQuantDequantPass(object):
1613 1614 1615 1616
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1617

1618 1619 1620
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1621 1622 1623 1624 1625
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1626
                 skip_pattern=["skip_quant"],
1627
                 quantizable_op_type=["elementwise_add", "pool2d"],
1628 1629 1630
                 is_full_quantized=False,
                 is_test=None,
                 scale_dict=None):
1631
        """
1632
        Constructor.
1633 1634 1635

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1636 1637 1638
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1639 1640 1641 1642 1643 1644 1645 1646
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1647
                quantized. Default is ["elementwise_add", "pool2d"]. 
1648 1649 1650 1651
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1652 1653
        """
        self._scope = scope
1654
        self._place = _get_paddle_place(place)
1655 1656
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
1657
        self._is_test = is_test
1658
        self._skip_pattern = skip_pattern
1659
        self._scale_dict = scale_dict
1660 1661

        if is_full_quantized:
1662
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1663 1664 1665
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1666
                assert op_type in utils._act_supported_quantizable_op_type, \
1667
                    op_type + " is not supported for quantization."
1668 1669 1670 1671
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1672 1673
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1674 1675 1676

    def apply(self, graph):
        """
1677 1678
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1679

1680 1681
        Args:
            graph(IrGraph): the target graph.
1682 1683
        Returns:
            None
1684 1685 1686
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1687 1688
        if self._is_test is None:
            self._is_test = graph.is_test()
1689 1690
        dequantized_vars_map = collections.OrderedDict()

1691 1692
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized or \
                        (not _is_input_all_not_persistable(graph, op_node)):
                        continue
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
                            quant_var_node, _ = \
                                self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits)
                            dequantized_vars_map[arg_name] = quant_var_node
                        graph.update_input_link(in_node, quant_var_node,
                                                op_node)
            t.update()
1730

1731 1732
        # Backward stage, update input link
        for op_node in all_op_nodes:
1733
            if op_node.name() in self._quantizable_grad_op_type:
1734 1735
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1736 1737
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
1738 1739 1740 1741
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1742 1743 1744 1745 1746 1747 1748
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
1749 1750 1751 1752 1753
        quant_var_node = graph.create_var_node(name="{}.quant_dequant".format(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        scale_name = "{}.quant_dequant@scale".format(var_node.name())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            if self._scale_dict is not None and var_node.name(
            ) in self._scale_dict.keys():
                scale_value = np.array([self._scale_dict[var_node.name()]],
                                       dtype=data_type)
            else:
                scale_value = np.array(
                    self._scope.find_var(scale_name).get_tensor(),
                    dtype=data_type)
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)

1769
        scale_in_node = graph.create_persistable_node(
H
handiz 已提交
1770
            name="{}.quant_dequant@scale".format(var_node.name()),
1771 1772 1773 1774
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())

1775
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
1787 1788
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
1789 1790 1791 1792 1793
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
1794 1795 1796 1797 1798 1799
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845


class InsertQuantizeLinear(object):
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
1846
        moving_rate(float): the rate for 'moving average' method.
1847
        is_test(bool, optional): Whether quantization with training or not. Default is True.
1848
        scale_dict(dict, optional): calibration ranges of tensors output.
1849 1850 1851 1852 1853 1854 1855 1856
    """

    def __init__(self,
                 place,
                 scope,
                 quant_bits=8,
                 quant_axis=-1,
                 channel_wise=False,
1857
                 moving_rate=0.9,
1858 1859
                 is_test=True,
                 scale_dict=None):
1860 1861 1862 1863 1864 1865
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test
1866
        self._moving_rate = moving_rate
1867
        self._scale_dict = scale_dict
1868

1869
    def insert_quant_op(self, graph, var_node, var_name=None):
1870
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
1871 1872 1873 1874 1875 1876
        var_name = var_node.name() if not var_name else var_name
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
1877 1878
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1879
        scale_name = self._quantized_scale_name(var_name)
1880 1881 1882
        if self.channel_wise:
            scale_var_shape = var_node.shape()[self.quant_axis]
            scale_var_type = core.VarDesc.VarType.LOD_TENSOR
1883 1884
            init_scale_value = np.ones(scale_var_shape,
                                       dtype=data_type) * _SCALE_DEFAULT_VALUE
1885 1886 1887 1888
        else:
            scale_var_shape = 1
            scale_var_type = var_node.type()
            init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
1889 1890 1891 1892 1893 1894

        if self._scale_dict is not None and var_node.name(
        ) in self._scale_dict.keys():
            init_scale_value = np.array([self._scale_dict[var_node.name()]],
                                        dtype=data_type)

1895
        scale_var_node = graph.create_persistable_node(
1896
            name=scale_name,
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
            var_type=scale_var_type,
            shape=[scale_var_shape],
            var_dtype=var_node.dtype())
        _init_var_node(scale_var_node, init_scale_value, self._scope,
                       self._place)

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1910 1911 1912
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1913 1914 1915 1916 1917

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

1918
        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
1919
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1920 1921
        outputs = {"Y": quant_var_node}
        if not self._is_test:
1922 1923
            scale_out_node = graph.create_var_node_from_desc(
                scale_var_node.var())
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())

1945
            outputs["OutScale"] = scale_out_node
1946 1947 1948 1949 1950 1951
            inputs['InState'] = state_in_node
            inputs['InAccum'] = accum_in_node
            outputs['OutState'] = state_out_node
            outputs['OutAccum'] = accum_out_node
            attrs["is_test"] = self._is_test
            attrs['moving_rate'] = self._moving_rate
1952

1953 1954 1955 1956
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)
1957 1958 1959 1960 1961 1962 1963

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
1964 1965 1966 1967
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1987 1988 1989
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1990 1991 1992 1993 1994 1995

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
1996
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1997

1998 1999 2000 2001
        quant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs={"Y": dequant_var_node})
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
H
handiz 已提交
2026
        return "%s@scale" % (var_name)
2027 2028 2029 2030 2031 2032 2033 2034

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


2035
class QuantizationTransformPassV2(QuantizationTransformPass):
2036 2037
    """
    Quantize the ops that have weights. Add quant and dequant ops for
2038
    the quantized ops's inputs. It is used in the new format of quantization.
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    """

    def __init__(self,
                 scope=None,
                 place=None,
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000,
                 moving_rate=0.9,
                 skip_pattern=['skip_quant'],
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
2057 2058
                 executor=None,
                 is_test=None):
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized. 
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
            assert op in utils._weight_supported_quantizable_op_type, \
                op + " is not supported for quantization."
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
2172
        self._is_test = is_test
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            any(pattern in op_node.op().attr("op_namescope") \
                                for pattern in self._skip_pattern)
        elif isinstance(self._skip_pattern, str):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            op_node.op().attr("op_namescope").find(
                                self._skip_pattern) != -1

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
                is_weight = True if var_node.name() in self.persistable_vars \
                    else False

                # if var node is weight and weight_preprocess_func is not None,
2214
                # will insert weight preprocess func
2215
                # to preorocess weight before quantization
2216 2217
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2218 2219
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2220 2221 2222
                    var_node = self._insert_func(graph,
                                                 self._weight_preprocess_func,
                                                 var_node, op)
2223
                elif not is_weight and self._act_preprocess_func is not None:
2224 2225 2226
                    var_node = self._insert_func(graph,
                                                 self._act_preprocess_func,
                                                 var_node, op)
2227 2228 2229 2230 2231 2232 2233 2234

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
                        graph, self._weight_quantize_func, var_node, op)
2235
                    self.processed_vars.append(name)
2236 2237
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2238 2239 2240
                    target_out_node = self._insert_func(graph,
                                                        self._act_quantize_func,
                                                        var_node, op)
2241
                    self.processed_vars.append(name)
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
                    continue

                quant_bits = self._weight_bits if var_node.name() in self.persistable_vars \
                    else self._activation_bits
                quant_type = self._weight_quantize_type if is_weight \
                    else self._activation_quantize_type
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
                    quant_axis = 1 if op.name() in \
                        utils._channelwise_quant_axis1_ops else 0
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
2260
                    moving_rate=self._moving_rate,
2261
                    is_test=self._is_test)
2262
                quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
2263
                    graph, var_node, var_name=name)
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
                dequant_var_node = insert_quant_pass.insert_dequant_op(
                    graph, quant_var_node, scale_var_node)

                self.dequantized_vars[name] = dequant_var_node
            graph.update_input_link(var_node, dequant_var_node, op)

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            name = var_node.name()
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
2301 2302
        if self._is_test is None:
            self._is_test = graph.is_test()
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph,
                                               op) and self._has_weight(op):
                        self._transform_forward(graph, op)
                t.update()
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


class AddQuantDequantPassV2(object):
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
2339
    op for the quantized ops's inputs. It is used in the new format of quantization.
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 skip_pattern=["skip_quant"],
                 quantizable_op_type=["elementwise_add", "pool2d"],
2352
                 is_full_quantized=False,
2353 2354
                 is_test=None,
                 scale_dict=None):
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
                quantized. Default is ["elementwise_add", "pool2d"]. 
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
2374 2375
            scale_dict(dict, optional): calibration ranges of tensors output.

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
2395
        self._is_test = is_test
2396
        self._skip_pattern = skip_pattern
2397
        self._scale_dict = scale_dict
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
                assert op_type in utils._act_supported_quantizable_op_type, \
                    op_type + " is not supported for quantization."
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
2426 2427
        if self._is_test is None:
            self._is_test = graph.is_test()
2428 2429 2430 2431 2432 2433 2434 2435
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized:
2452
                        continue
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
2469
                                moving_rate=self._moving_rate,
2470 2471
                                is_test=self._is_test,
                                scale_dict=self._scale_dict)
2472 2473 2474 2475 2476 2477 2478 2479
                            quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                                graph, in_node)
                            dequant_var_node = insert_quant_pass.insert_dequant_op(
                                graph, quant_var_node, scale_var_node)
                            dequantized_vars_map[arg_name] = dequant_var_node
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)
                t.update()
2480 2481 2482 2483 2484 2485

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2486 2487
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

        return graph


class ReplaceFakeQuantDequantPass(object):
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

2500
    def __init__(self, scope, place, quant_bits=8):
2501 2502 2503 2504 2505 2506
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2507 2508
            quant_bits(int, optional): quantization bit number for activation. Default is 8.

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
2526
        self._quant_bits = quant_bits
2527 2528 2529 2530 2531 2532 2533 2534 2535
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_dequant_ops = []

        for op in graph.all_op_nodes():
2536 2537
            if op.name() in _fake_quant_dequant_op_list or op.name(
            ) == "moving_average_abs_max_scale":
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
                fake_quant_dequant_ops.append(op)

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
        scale_node = graph._find_node_by_name(op.outputs,
                                              op.output("OutScale")[0])

        quant_axis = op.op().attr("quant_axis") if op.op().has_attr(
            "quant_axis") else -1
        bit_length = op.op().attr("bit_length") if op.op().has_attr(
2556
            "bit_length") else self._quant_bits
2557 2558 2559 2560 2561 2562 2563 2564 2565

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
            _init_var_node(zero_point_node,
                           np.zeros(scale_node.shape(), dtype="int32"),
                           self._scope, self._place)

        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            x_node.name()),
                                               var_type=x_node.type(),
                                               shape=x_node.shape(),
                                               var_dtype=x_node.dtype())
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs={
                                                 "quant_axis": quant_axis,
2578
                                                 "bit_length": bit_length
2579 2580 2581 2582 2583 2584 2585
                                             },
                                             inputs={
                                                 "X": x_node,
                                                 "Scale": scale_node,
                                                 "ZeroPoint": zero_point_node
                                             },
                                             outputs={"Y": quant_var_node})
2586 2587 2588 2589 2590
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs={
                                                   "quant_axis": quant_axis,
                                                   "bit_length": bit_length
                                               },
                                               inputs={
                                                   "X": quant_var_node,
                                                   "Scale": scale_node,
                                                   "ZeroPoint": zero_point_node
                                               },
                                               outputs={"Y": out_node})
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantWeightPass(object):
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
    
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

    def __init__(self,
                 scope,
                 place,
                 bias_correction=False,
                 quant_bits=8,
                 save_int_weight=True):
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
                scale_node = graph._find_node_by_name(_op.inputs,
                                                      _op.input("Scale")[0])
                zero_point_node = graph._find_node_by_name(
2680 2681
                    _op.inputs,
                    _op.input("ZeroPoint")[0])
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
                out_node = graph._find_node_by_name(_op.outputs,
                                                    _op.output("Y")[0])

                scale_v = self._load_var(scale_node.name())
                assert scale_v.ndim in [1, 2
                                        ], "the dim of scale_v should be 1 or 2"
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
2697 2698 2699 2700 2701
                quantized_param_v = utils.quant_tensor(param_v.copy(),
                                                       scale_v,
                                                       quant_axis,
                                                       bits_length,
                                                       onnx_format=True)
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
                if self._bias_correction == True:
                    quantized_param_v = utils.bias_correction_w(
                        param_v,
                        quantized_param_v,
                        scale_v,
                        quant_axis,
                        weight_bits=bits_length)
                if self._save_int_weight:
                    # cast weight type to int
                    if self._quant_bits == 8:
                        save_weight_dtype = np.int8
                    quantized_param_v = quantized_param_v.astype(
                        save_weight_dtype)
                self._restore_var(x_node.name(), quantized_param_v)

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881


class AddQuantDequantForInferencePass(object):
    """
    When export quant model, it will traverse to find the output of each op, and then insert the quant/dequant op after it.
    """

    def __init__(self, scope, place, quant_bits=8):
        """
        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, it can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
            quant_bits(int, optional): quantization bit number for weight. Default is 8.
        """
        self._scope = scope
        self._place = place
        self._quant_bits = quant_bits
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST

    def apply(self, graph):
        """
        Args:
            graph(IrGraph): the target graph.
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        dequant_node_map = {}
        dequantized_vars_map = collections.OrderedDict()
        for op_node in graph.all_op_nodes():
            if op_node.name() in self._teller_set:
                var_names = utils._get_op_output_var_names(op_node)
                for var_name in var_names:
                    out_node = graph._find_node_by_name(op_node.outputs,
                                                        var_name)
                    if out_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
                    if var_name in dequantized_vars_map:
                        dequant_var_node = dequantized_vars_map[var_name]
                    else:
                        dequant_var_node = self._insert_quant_dequant_op(
                            graph, out_node)
                        dequantized_vars_map[var_name] = dequant_var_node
                    dequant_node_map[var_name] = dequant_var_node

        # remove unuse node and link act quant/dequant linear to op node
        for op_node in graph.all_op_nodes():
            if op_node.name() == 'moving_average_abs_max_scale':
                graph.safe_remove_nodes(op_node)
            else:
                var_names = utils._get_op_input_var_names(op_node)
                for var_name in var_names:
                    if var_name in dequant_node_map:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, var_name)
                        graph.update_input_link(in_node,
                                                dequant_node_map[var_name],
                                                op_node)

        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)

    def _insert_quant_dequant_op(self, graph, var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
        var_name = var_node.name()
        quant_axis = -1
        quant_var_node = graph.create_var_node(
            name="{}.quantized".format(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph._find_node_by_name(graph.all_persistable_nodes(),
                                                  self._scale_name(var_name))
        try:
            zero_point_node = graph._find_node_by_name(
                graph.all_persistable_nodes(),
                "{}@zero_point".format(quant_var_node.name()))
        except:
            zero_point_node = graph.create_persistable_node(
                name="{}@zero_point".format(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": quant_axis, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
        outputs = {"Y": quant_var_node}

        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)

        # add dequant_linear node
        dequant_var_node = graph.create_var_node(
            name="{}.dequantized".format(quant_var_node.name()),
            var_type=quant_var_node.type(),
            shape=quant_var_node.shape(),
            var_dtype=quant_var_node.dtype())

        inputs = {"X": quant_var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": -1, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward

        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs=attrs,
                                               inputs=inputs,
                                               outputs={"Y": dequant_var_node})

        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node