distributed_strategy.py 86.5 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

39

40 41 42 43 44 45 46 47 48 49 50 51 52
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
53 54 55
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
56 57 58 59 60 61 62 63 64 65 66 67
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


105 106 107 108
ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy
ReduceStrategyFleet = int


109
class DistributedStrategy(object):
110 111
    __lock_attr = False

112
    def __init__(self):
113 114 115
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
116
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
117
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
118

119 120
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

121
        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
122 123 124
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
125
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
126 127 128

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
129
        if _global_flags().is_public(key):
130
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
131 132
                _global_flags()[key]
            )
133
        key = 'FLAGS_conv_workspace_size_limit'
134 135
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
136
        key = 'FLAGS_cudnn_exhaustive_search'
137 138
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
139
        key = 'FLAGS_sync_nccl_allreduce'
140 141
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
142

143 144 145 146
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
147 148 149
            raise TypeError(
                "%s is not a attribute of %s" % (key, self.__class__.__name__)
            )
150
        object.__setattr__(self, key, value)
151

152
    def save_to_prototxt(self, output):
153 154 155 156
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
157

158
          .. code-block:: python
1
123malin 已提交
159

160
            import paddle.distributed.fleet as fleet
161 162 163
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
164
            strategy.recompute_configs = {"checkpoints": ["x"]}
165 166
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
167 168 169 170
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
171 172 173 174
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
175

176 177
          .. code-block:: python

178
            import paddle.distributed.fleet as fleet
179
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
180
            strategy.load_from_prototxt("dist_strategy.prototxt")
181 182 183
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
184 185
                str(f.read()), self.strategy
            )
186 187 188 189 190 191 192

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
193

194 195
          .. code-block:: python

M
mapingshuo 已提交
196
            import paddle
1
123malin 已提交
197
            exe_strategy = paddle.static.ExecutionStrategy()
198 199 200 201
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

202
            strategy = paddle.distributed.fleet.DistributedStrategy()
203 204 205 206 207
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
208 209 210 211 212
            setattr(
                execution_strategy,
                f.name,
                getattr(self.strategy.execution_strategy, f.name),
            )
213 214 215
        return execution_strategy

    @execution_strategy.setter
216
    @is_strict_auto
217 218 219
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
220 221 222 223 224
            setattr(
                self.strategy.execution_strategy,
                f.name,
                getattr(strategy, f.name),
            )
225 226 227 228 229 230 231 232 233

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
234

235 236
          .. code-block:: python

M
mapingshuo 已提交
237
            import paddle
1
123malin 已提交
238
            build_strategy = paddle.static.BuildStrategy()
239 240 241 242 243 244 245 246
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
247

248
            strategy = paddle.distributed.fleet.DistributedStrategy()
249 250 251 252 253 254
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
255 256 257 258
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
                value = ReduceStrategyFluid(value)
            setattr(build_strategy, f.name, value)
259 260 261
        return build_strategy

    @build_strategy.setter
262
    @is_strict_auto
263 264 265 266
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
267 268 269 270
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
271
            elif f.label == 3:  # repeated field
272 273 274
                getattr(self.strategy.build_strategy, f.name).extend(
                    getattr(strategy, f.name)
                )
275 276

    @property
Y
Yuang Liu 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
294 295 296 297 298
        check_configs_key(
            self.strategy.gradient_scale_configs,
            config,
            'gradient_scale_configs',
        )
Y
Yuang Liu 已提交
299 300 301
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
302
    def a_sync(self):
303 304
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
305
        for training. This property is valid when we are using parameter server training,
306 307 308 309
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
310

311 312
          .. code-block:: python

313
            import paddle.distributed.fleet as fleet
314 315 316 317
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
318
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
319

320 321 322
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
323
        return self.strategy.a_sync
324

D
Dong Daxiang 已提交
325
    @a_sync.setter
326
    @is_strict_auto
D
Dong Daxiang 已提交
327
    def a_sync(self, flag):
328
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
329
            self.strategy.a_sync = flag
330
            self.a_sync_configs = {"k_steps": 0}
331
        else:
332
            raise ValueError(
333 334 335 336
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
337 338

    @property
D
Dong Daxiang 已提交
339
    def a_sync_configs(self):
340
        """
D
Dong Daxiang 已提交
341
        Set a_sync update configurations. In general, asynchronous parameter server
342 343
        training has serveral configurable settings that can be configured through
        a dict.
344

345
        **Notes**:
M
mapingshuo 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
359

360
        Examples:
1
123malin 已提交
361

362
          .. code-block:: python
363

364
            import paddle.distributed.fleet as fleet
365 366
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
367

368
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
369
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
370
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
371
            strategy.a_sync_configs = configs
372

373 374
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
375

376
        """
D
Dong Daxiang 已提交
377
        return get_msg_dict(self.strategy.a_sync_configs)
378

D
Dong Daxiang 已提交
379
    @a_sync_configs.setter
380
    @is_strict_auto
D
Dong Daxiang 已提交
381
    def a_sync_configs(self, configs):
382 383 384
        check_configs_key(
            self.strategy.a_sync_configs, configs, "a_sync_configs"
        )
D
Dong Daxiang 已提交
385
        assign_configs_value(self.strategy.a_sync_configs, configs)
386

387 388 389
    @property
    def trainer_desc_configs(self):
        """
390
        Set trainer desc configurations.
391 392 393 394 395 396 397 398

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

399
            stat_var_names(list(str)):
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

419 420 421 422
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
W
wangguanqun 已提交
423
        Default value: False
424 425 426 427 428 429 430 431 432 433

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
W
wangguanqun 已提交
434
            strategy.adam_d2sum = True  # by default this is False
435 436 437 438 439 440 441 442 443 444 445 446 447

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
448 449 450 451
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
452

453 454 455
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
456 457 458
        check_configs_key(
            self.strategy.trainer_desc_configs, configs, "trainer_desc_configs"
        )
459 460
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

461 462 463
    @property
    def fs_client_param(self):
        """
464
        Set fs client configurations.
465 466 467 468
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
469
            hadoop_bin(str):
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
486 487 488
        check_configs_key(
            self.strategy.fs_client_param, configs, "fs_client_param"
        )
489 490 491 492 493 494 495 496 497 498
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
499

500 501
        table_param = self.strategy.downpour_table_param

502
        def set_table_config(msg, config_name, configs, index=0):
503 504 505
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
506
                    # print("message:", name)
507 508 509 510
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
511
                        # print("message num:", name, num)
512 513 514 515
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
516 517 518
                        set_table_config(
                            getattr(msg, field.name), name, configs
                        )
519
                else:
520
                    # print("not message:", name)
521 522 523 524 525
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
526 527 528 529
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
530

531 532 533
        if not configs:
            print("table configs is empty")
        else:
534 535 536
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
537 538 539 540 541
                set_table_config(
                    table_data,
                    "table_parameters." + table_name,
                    configs[table_name],
                )
542

543 544
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        support_sparse_key_list = [
            'sparse_table_class',
            'sparse_compress_in_save',
            'sparse_shard_num',
            'sparse_accessor_class',
            'sparse_learning_rate',
            'sparse_initial_g2sum',
            'sparse_initial_range',
            'sparse_weight_bounds',
            'sparse_fea_dim',
            'sparse_embedx_dim',
            'sparse_embedx_threshold',
            'sparse_nonclk_coeff',
            'sparse_click_coeff',
            'sparse_base_threshold',
            'sparse_delta_threshold',
            'sparse_delta_keep_days',
            'sparse_delete_after_unseen_days',
            'sparse_show_click_decay_rate',
            'sparse_delete_threshold',
            'sparse_converter',
            'sparse_deconverter',
            'sparse_enable_cache',
            'sparse_cache_rate',
            'sparse_cache_file_num',
            'sparse_beta1_decay_rate',
            'sparse_beta2_decay_rate',
            'sparse_ada_epsilon',
            'sparse_optimizer',
            'sparse_ssd_unseenday_threshold',
            'embed_sparse_optimizer',
            'embed_sparse_learning_rate',
            'embed_sparse_weight_bounds',
            'embed_sparse_initial_range',
            'embed_sparse_initial_g2sum',
            'embed_sparse_beta1_decay_rate',
            'embed_sparse_beta2_decay_rate',
            'embedx_sparse_optimizer',
            'embedx_sparse_learning_rate',
            'embedx_sparse_weight_bounds',
            'embedx_sparse_initial_range',
            'embedx_sparse_initial_g2sum',
            'embedx_sparse_beta1_decay_rate',
            'embedx_sparse_beta2_decay_rate',
            'feature_learning_rate',
            'nodeid_slot',
        ]
592 593
        support_sparse_table_class = ['DownpourSparseTable']
        support_sparse_accessor_class = [
594 595 596 597 598 599
            'DownpourSparseValueAccessor',
            'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor',
            'DownpourUnitAccessor',
            'DownpourDoubleUnitAccessor',
            'DownpourCtrDymfAccessor',
600 601 602
        ]
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
603
        def add_graph_config(graph, strategy):
604 605 606
            graph.feature_learning_rate = strategy.get(
                'feature_learning_rate', 0.05
            )
D
danleifeng 已提交
607 608
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

609
        def sparse_optimizer_config(sgd, strategy, prefix):
610 611 612
            optimizer_name = strategy.get(
                prefix + "sparse_optimizer", "adagrad"
            )
613 614 615 616
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
617 618
                    prefix + 'sparse_learning_rate', 0.05
                )
619
                sgd.naive.initial_range = strategy.get(
620 621 622 623 624
                    prefix + 'sparse_initial_range', 1e-4
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
625 626 627 628
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
629 630
                    prefix + 'sparse_learning_rate', 0.05
                )
631
                sgd.adagrad.initial_range = strategy.get(
632 633
                    prefix + 'sparse_initial_range', 1e-4
                )
634 635 636
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
637 638 639 640 641
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
642 643 644 645
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
646 647
                    prefix + 'sparse_learning_rate', 0.05
                )
648
                sgd.adagrad.initial_range = strategy.get(
649 650
                    prefix + 'sparse_initial_range', 1e-4
                )
651 652 653
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
654 655 656 657 658
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
659 660 661
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
662
                sgd.adam.learning_rate = strategy.get(
663 664
                    prefix + 'sparse_learning_rate', 0.001
                )
D
danleifeng 已提交
665
                sgd.adam.initial_range = strategy.get(
666 667
                    prefix + 'sparse_initial_range', 1e-4
                )
D
danleifeng 已提交
668
                sgd.adam.beta1_decay_rate = strategy.get(
669 670
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
D
danleifeng 已提交
671
                sgd.adam.beta2_decay_rate = strategy.get(
672 673
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
D
danleifeng 已提交
674
                sgd.adam.ada_epsilon = strategy.get(
675 676 677 678 679
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
D
danleifeng 已提交
680 681 682
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
683
                sgd.adam.learning_rate = strategy.get(
684 685
                    prefix + 'sparse_learning_rate', 0.001
                )
686
                sgd.adam.initial_range = strategy.get(
687 688
                    prefix + 'sparse_initial_range', 1e-4
                )
689
                sgd.adam.beta1_decay_rate = strategy.get(
690 691
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
692
                sgd.adam.beta2_decay_rate = strategy.get(
693 694
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
695
                sgd.adam.ada_epsilon = strategy.get(
696 697 698 699 700
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
701 702 703 704 705 706
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
707 708 709
            table_class = config.get(
                "sparse_table_class", "DownpourSparseTable"
            )
710 711 712
            if table_class not in support_sparse_table_class:
                raise ValueError(
                    "support sparse_table_class: ['DownpourSparseTable'], but actual %s"
713 714
                    % (table_class)
                )
715 716
            table_data.table_class = 'MemorySparseTable'
            table_data.shard_num = config.get('sparse_shard_num', 1000)
717
            table_data.enable_sparse_table_cache = config.get(
718 719
                'sparse_enable_cache', True
            )
720
            table_data.sparse_table_cache_rate = config.get(
721 722
                'sparse_cache_rate', 0.00055
            )
723
            table_data.sparse_table_cache_file_num = config.get(
724 725
                'sparse_cache_file_num', 16
            )
726

727 728 729
            accessor_class = config.get(
                "sparse_accessor_class", "DownpourCtrAccessor"
            )
730 731
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
732
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
733 734
                    % (accessor_class)
                )
735

736 737
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
738 739
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
740
            else:
741 742 743
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
744 745 746 747 748
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
749 750
                'sparse_embedx_threshold', 10
            )
751

752 753 754 755 756
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

757
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
758 759
                'sparse_nonclk_coeff', 0.1
            )
760
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
761 762
                'sparse_click_coeff', 1
            )
763
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
764 765
                'sparse_base_threshold', 1.5
            )
766
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
767 768
                'sparse_delta_threshold', 0.25
            )
769
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
770 771 772 773 774 775 776 777 778 779 780 781 782 783
                'sparse_delta_keep_days', 16
            )
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = (
                config.get('sparse_show_click_decay_rate', 0.98)
            )
            table_data.accessor.ctr_accessor_param.delete_threshold = (
                config.get('sparse_delete_threshold', 0.8)
            )
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = (
                config.get('sparse_delete_after_unseen_days', 30)
            )
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = (
                config.get('sparse_ssd_unseenday_threshold', 1)
            )
784 785 786 787 788 789 790 791 792 793 794 795 796
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

797 798 799 800 801 802 803 804 805 806
            if (
                accessor_class == 'DownpourCtrAccessor'
                or accessor_class == 'DownpourCtrDoubleAccessor'
            ):
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, ''
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, ''
                )
807
            else:
808 809 810 811 812 813
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, 'embed_'
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, 'embedx_'
                )
D
danleifeng 已提交
814
            add_graph_config(table_data.accessor.graph_sgd_param, config)
815 816 817 818 819

        if not configs:
            print("fleet desc config is empty")
        else:
            for table_name in configs:
820 821 822 823
                if (
                    table_name == 'dense_table'
                    or table_name == 'datanorm_table'
                ):
824 825 826 827 828 829 830
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

831
    @property
832 833 834 835
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
836

837
        Examples:
1
123malin 已提交
838

839
          .. code-block:: python
840

841
            import paddle.distributed.fleet as fleet
842 843
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
844

845 846
        """
        return self.strategy.amp
847

848
    @amp.setter
849
    @is_strict_auto
850
    def amp(self, flag):
851
        if isinstance(flag, bool):
852
            self.strategy.amp = flag
853
        else:
854
            print("WARNING: amp should have value of bool type")
855 856

    @property
857
    def amp_configs(self):
858 859 860 861 862
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
878

879 880 881 882 883 884 885 886
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
887

888 889 890 891 892 893 894 895
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
896 897 898 899 900 901 902 903 904 905 906 907 908

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
909
        """
910
        return get_msg_dict(self.strategy.amp_configs)
911

912
    @amp_configs.setter
913
    @is_strict_auto
914 915 916
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

943
    @property
944 945 946 947 948 949
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
950

951 952
          .. code-block:: python

953
            import paddle.distributed.fleet as fleet
954 955 956 957 958 959
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
960

961 962
    @property
    def sync_nccl_allreduce(self):
963 964 965 966 967
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
968

969 970 971 972 973 974
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
975 976 977
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
978
    @is_strict_auto
979 980 981 982
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
983
            print("WARNING: sync_nccl_allreduce should have value of bool type")
984

985
    @property
986
    def use_hierarchical_allreduce(self):
987 988 989 990 991 992
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
993

994 995 996 997 998 999
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
1000
        return self.strategy.use_hierarchical_allreduce
1001

1002
    @use_hierarchical_allreduce.setter
1003
    @is_strict_auto
1004
    def use_hierarchical_allreduce(self, flag):
1005
        if isinstance(flag, bool):
1006
            self.strategy.use_hierarchical_allreduce = flag
1007 1008
        else:
            print(
1009
                "WARNING: use_hierarchical_allreduce should have value of bool type"
1010 1011 1012
            )

    @property
1013
    def hierarchical_allreduce_inter_nranks(self):
1014 1015 1016 1017 1018
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
1019

1020 1021 1022 1023 1024 1025
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
1026
        return self.strategy.hierarchical_allreduce_inter_nranks
1027

1028
    @hierarchical_allreduce_inter_nranks.setter
1029
    @is_strict_auto
1030 1031 1032
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
1033 1034
        else:
            print(
1035
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
1036 1037
            )

1038
    @property
1039
    def sync_batch_norm(self):
1040 1041
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
1042

1043 1044 1045
        Default value: False

        Examples:
1
123malin 已提交
1046

1047 1048 1049 1050 1051 1052 1053
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

1054
        return self.strategy.sync_batch_norm
1055

1056
    @sync_batch_norm.setter
1057
    @is_strict_auto
1058
    def sync_batch_norm(self, flag):
1059
        if isinstance(flag, bool):
1060
            self.strategy.sync_batch_norm = flag
1061
        else:
1062
            print("WARNING: sync_batch_norm should have value of bool type")
1063 1064 1065

    @property
    def fuse_all_reduce_ops(self):
1066 1067 1068 1069 1070
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
1071

1072 1073 1074 1075 1076 1077
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
1078 1079 1080
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
1081
    @is_strict_auto
1082 1083 1084 1085 1086 1087
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

1088 1089
    @property
    def fuse_grad_size_in_MB(self):
1090 1091 1092 1093 1094 1095
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
1096

1097
          .. code-block:: python
1
123malin 已提交
1098

1099 1100 1101 1102
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
1103 1104 1105
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
1106
    @is_strict_auto
1107 1108 1109 1110 1111 1112
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

1113 1114 1115
    @property
    def last_comm_group_size_MB(self):
        """
1116 1117 1118
        Specifying the size of gradient to fuse in Mega-Bytes when
        the last group of each batch communicates. Making the last group
        small is useful to improve performance.
1119 1120 1121 1122 1123

        Default value: 1

        Examples:
          .. code-block:: python
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1139 1140 1141
    @property
    def find_unused_parameters(self):
        """
1142
        Indicating whether we are using find_unused_parameters to
1143 1144
        find unused parameters in DataParallel.

1145
        Default value: False
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
1165 1166
                "WARNING: find_unused_parameters should have value of bool type"
            )
1167

1168 1169 1170 1171 1172
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1173
    @is_strict_auto
1174 1175 1176 1177 1178 1179 1180 1181
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

1182
    @property
1183
    def nccl_comm_num(self):
1184 1185 1186 1187 1188 1189
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
1190

1191
          .. code-block:: python
1
123malin 已提交
1192

1193 1194 1195 1196 1197
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

1198
        return self.strategy.nccl_comm_num
1199

1200
    @nccl_comm_num.setter
1201
    @is_strict_auto
1202
    def nccl_comm_num(self, value):
1203
        if isinstance(value, int):
1204
            self.strategy.nccl_comm_num = value
1205
        else:
1206
            print("WARNING: nccl_comm_num should have value of int type")
1207

1208
    @recompute.setter
1209
    @is_strict_auto
1210
    def recompute(self, flag):
1211
        if isinstance(flag, bool):
1212
            self.strategy.recompute = flag
1213
        else:
1214
            print("WARNING: recompute should have value of bool type")
1215 1216

    @property
1217 1218
    def recompute_configs(self):
        """
1219 1220
        Set recompute configurations.

J
JZ-LIANG 已提交
1221 1222 1223 1224
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

1225
        enable_offload(bool): enable recompute checkpoints offload feature. this feature
J
JZ-LIANG 已提交
1226 1227 1228 1229 1230 1231
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
1232
        specific here should be determined ("-1" is not allowed).
1233

1234
        Examples:
1
123malin 已提交
1235

1236
          .. code-block:: python
1
123malin 已提交
1237

1238
            import paddle.distributed.fleet as fleet
1239 1240
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
1241 1242 1243 1244
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
1245 1246 1247 1248 1249

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1250
    @is_strict_auto
1251
    def recompute_configs(self, configs):
1252 1253 1254
        check_configs_key(
            self.strategy.recompute_configs, configs, "checkpoint_configs"
        )
1255
        assign_configs_value(self.strategy.recompute_configs, configs)
1256

1257 1258 1259 1260
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
1261
        optimization. We implement the sharding optimizer following the ZeRO-DP
J
JZ-LIANG 已提交
1262 1263
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1264

1265 1266
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1267 1268 1269
        Default value: False

        Examples:
1
123malin 已提交
1270

1271
          .. code-block:: python
1
123malin 已提交
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
1290
        Set sharding configurations.
1291 1292

        **Note**:
1293 1294
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and
1295 1296
            communication. Default is segment_broadcast_MB.

1297
            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and
1298 1299 1300 1301
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

1302
            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation.
1303 1304 1305 1306 1307 1308
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

1309
            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model.
1310 1311 1312 1313 1314
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1315
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1316

1317
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1318

1319
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on.
1320
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1321

1322 1323 1324
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1325

1326
        Examples:
1
123malin 已提交
1327

1328
          .. code-block:: python
1
123malin 已提交
1329

1330
            # sharding-DP, 2 nodes with 8 gpus per node
1331 1332 1333
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1334
            strategy.sharding_configs = {
1335 1336 1337
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1338
                "dp_degree": 2,
1339 1340
                "gradient_merge_acc_step": 4,
                }
1341 1342 1343 1344 1345 1346
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
1347 1348 1349
        check_configs_key(
            self.strategy.sharding_configs, configs, "sharding_configs"
        )
1350 1351
        assign_configs_value(self.strategy.sharding_configs, configs)

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
1443 1444
                "WARNING: fuse_grad_size_in_num should have value of int32 type"
            )
1445

1446
    @property
1447 1448 1449 1450 1451 1452 1453 1454
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1455

1456
          .. code-block:: python
1
123malin 已提交
1457

1458
            import paddle.distributed.fleet as fleet
1459 1460 1461 1462 1463
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
            print("WARNING: is_fl_ps_mode should have value of bool type")

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
            print("WARNING: with_coordinator should have value of bool type")

1489
    @pipeline.setter
1490
    @is_strict_auto
1491
    def pipeline(self, flag):
1492
        if isinstance(flag, bool):
1493
            self.strategy.pipeline = flag
1494
        else:
1495
            print("WARNING: pipeline should have value of bool type")
1496 1497

    @property
1498 1499 1500 1501
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
1502
        There are Tensor queue buffer between each pair of neighborhood GPUS
1503 1504 1505
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
1506
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
1507
        so that we will have a faster producer for downstream consumers.
1508

1509 1510
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1511

1512
            **micro_batch_size**: the number of small batches in each user defined batch
1513

1514
        Examples:
1
123malin 已提交
1515

1516
          .. code-block:: python
1
123malin 已提交
1517

1518
            import paddle.distributed.fleet as fleet
1519 1520
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1521
            strategy.pipeline_configs = {"micro_batch_size": 12}
1522

1523
        """
1524

1525
        return get_msg_dict(self.strategy.pipeline_configs)
1526

1527
    @pipeline_configs.setter
1528
    @is_strict_auto
1529
    def pipeline_configs(self, configs):
1530 1531 1532
        check_configs_key(
            self.strategy.pipeline_configs, configs, "pipeline_configs"
        )
1533
        assign_configs_value(self.strategy.pipeline_configs, configs)
1534

L
lilong12 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1567 1568
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1569 1570 1571 1572 1573 1574 1575 1576

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1577 1578
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1579 1580 1581 1582 1583 1584 1585

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
1586 1587 1588 1589 1590
        check_configs_key(
            self.strategy.tensor_parallel_configs,
            configs,
            "tensor_parallel_configs",
        )
L
lilong12 已提交
1591 1592
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1593 1594 1595
    @property
    def hybrid_configs(self):
        """
1596
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism
1597 1598 1599 1600 1601 1602 1603
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
1604
                                    If it is not set, or set to -1, its value will be inferred
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
1623 1624 1625
        check_configs_key(
            self.strategy.hybrid_configs, configs, "hybrid_configs"
        )
1626 1627
        assign_configs_value(self.strategy.hybrid_configs, configs)

1628
    @property
1629
    def localsgd(self):
1630
        """
M
mapingshuo 已提交
1631 1632 1633
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1634 1635 1636


        Examples:
1
123malin 已提交
1637

1638 1639 1640 1641 1642 1643 1644
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1645
        return self.strategy.localsgd
1646

1647
    @localsgd.setter
1648
    @is_strict_auto
1649 1650 1651
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1652
        else:
1653
            print("WARNING: localsgd should have value of bool type")
1654 1655

    @property
1656
    def localsgd_configs(self):
1657 1658 1659 1660 1661
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1662
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1663
            begin_step(int) The step of beginning training by localsgd. Default 1.
1664 1665

        Examples:
1
123malin 已提交
1666

1667 1668 1669 1670 1671
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1672 1673
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1674 1675
        """

1676
        return get_msg_dict(self.strategy.localsgd_configs)
1677

1678
    @localsgd_configs.setter
1679
    @is_strict_auto
1680
    def localsgd_configs(self, configs):
1681 1682 1683
        check_configs_key(
            self.strategy.localsgd_configs, configs, "localsgd_configs"
        )
1684
        assign_configs_value(self.strategy.localsgd_configs, configs)
1685

1686 1687 1688 1689
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
1690
        For more details, please refer to `Adaptive Communication Strategies to Achieve
1691 1692 1693 1694
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1695

1696 1697 1698 1699 1700 1701 1702
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1703
        return self.strategy.adaptive_localsgd
1704 1705 1706 1707 1708

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1709
            self.strategy.adaptive_localsgd = flag
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1723
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1724 1725

        Examples:
1
123malin 已提交
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
1741 1742 1743 1744 1745
        check_configs_key(
            self.strategy.adaptive_localsgd_configs,
            configs,
            "adaptive_localsgd_configs",
        )
1746 1747
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1748
    @property
1749
    def dgc(self):
1750 1751 1752 1753 1754 1755 1756
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1757

1758 1759 1760 1761 1762 1763 1764
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1765
        return self.strategy.dgc
1766

1767
    @dgc.setter
1768
    @is_strict_auto
1769 1770 1771
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1772
        else:
1773
            print("WARNING: dgc should have value of bool type")
1774 1775

    @property
1776
    def dgc_configs(self):
1777
        r"""
1778 1779 1780 1781
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1792 1793

        Examples:
1
123malin 已提交
1794

1795 1796 1797 1798 1799 1800 1801
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1802
        return get_msg_dict(self.strategy.dgc_configs)
1803

1804
    @dgc_configs.setter
1805
    @is_strict_auto
1806 1807 1808
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1809

1810 1811 1812 1813 1814 1815 1816
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1834
    @property
1835
    def gradient_merge(self):
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1847

M
mapingshuo 已提交
1848 1849
          .. code-block:: python

1850
            import paddle.distributed.fleet as fleet
1851 1852 1853 1854
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1855
        return self.strategy.gradient_merge
1856

1857
    @gradient_merge.setter
1858
    @is_strict_auto
1859
    def gradient_merge(self, flag):
1860
        if isinstance(flag, bool):
1861
            self.strategy.gradient_merge = flag
1862
        else:
1863 1864 1865 1866
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1867 1868
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1869 1870 1871 1872 1873 1874 1875

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1876

M
mapingshuo 已提交
1877 1878
          .. code-block:: python

1879
            import paddle.distributed.fleet as fleet
1880 1881 1882 1883
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1884 1885 1886
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1887
    @is_strict_auto
1888
    def gradient_merge_configs(self, configs):
1889 1890 1891
        check_configs_key(
            self.strategy.gradient_merge_configs, configs, "gradient_configs"
        )
1892
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1893 1894

    @property
1895
    def lars(self):
1896
        """
1897 1898
        Set lars configurations. lars is used to deal with the convergence problems when the global
        batch size is larger than 8k.  For more details, please refer to
1899 1900 1901 1902 1903
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1904

1905 1906 1907 1908 1909 1910
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1911
        return self.strategy.lars
1912

1913
    @lars.setter
1914
    @is_strict_auto
1915
    def lars(self, flag):
1916
        if isinstance(flag, bool):
1917
            self.strategy.lars = flag
1918
        else:
1919
            print("WARNING: lars should have value of bool type")
1920

1921 1922
    @property
    def lars_configs(self):
1923 1924 1925 1926 1927 1928
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
1929 1930
        **epsilon (float)**: argument is used to avoid potential devision-by-zero
        when compute the local lr;
1931 1932 1933 1934
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1935

1936
          .. code-block:: python
M
mapingshuo 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1948 1949 1950
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1951
    @is_strict_auto
1952 1953 1954 1955
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1956
    @property
1957
    def lamb(self):
1958
        """
1959 1960 1961
        Set lamb configurations. lamb is used to deal with the convergence problems for large
        batch size training, specially for attention-related model like BERT. For more details,
        please refer to
1962 1963 1964
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1965

1966
        Examples:
1
123malin 已提交
1967

1968 1969 1970 1971 1972 1973 1974
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1975
        return self.strategy.lamb
1976

1977
    @lamb.setter
1978
    @is_strict_auto
1979
    def lamb(self, flag):
1980
        if isinstance(flag, bool):
1981
            self.strategy.lamb = flag
1982
        else:
1983
            print("WARNING: lamb should have value of bool type")
1984

1985 1986
    @property
    def lamb_configs(self):
1987 1988 1989 1990 1991 1992 1993 1994 1995
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1996

1997
          .. code-block:: python
M
mapingshuo 已提交
1998

1999 2000 2001 2002 2003 2004 2005 2006
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
2007 2008 2009
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
2010
    @is_strict_auto
2011 2012 2013 2014
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

2015 2016
    @property
    def elastic(self):
2017 2018 2019 2020
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
2021 2022 2023
        return self.strategy.elastic

    @elastic.setter
2024
    @is_strict_auto
2025 2026 2027 2028 2029 2030 2031 2032
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
2033 2034
        """
        Indicating whether we are using auto-parallel configuration
2035
        This feature is currently an experimental feature. Currently,
2036 2037 2038 2039 2040 2041
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
2042

2043 2044 2045
          .. code-block:: python

            import paddle
2046
            paddle.enable_static()
1
123malin 已提交
2047
            import paddle.distributed.fleet as fleet
2048

2049 2050
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
2051 2052
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
2053 2054 2055 2056

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
2057 2058 2059 2060 2061 2062 2063 2064 2065
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

2066 2067 2068 2069
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
2070
        This feature is currently an experimental feature. Currently,
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    @property
    def split_data(self):
        """
        Indicating whether we split the data. If True, we split the data.
        Default Value: True
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.split_data = True
        """
        return self.strategy.split_data

    @split_data.setter
    def split_data(self, flag):
        if isinstance(flag, bool):
            self.strategy.split_data = flag
        else:
            print("WARNING: split_data should have value of bool type")

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
    @property
    def qat(self):
        """
        Indicating whether we are using quantization training
        Default Value: False
        """
        return self.strategy.qat

    @qat.setter
    def qat(self, flag):
        if isinstance(flag, bool):
            self.strategy.qat = flag
        else:
            print("WARNING: qat should have value of bool type")

    @property
    def qat_configs(self):
        """
        Set quantization training configurations. In general, qat has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
            channel_wise_abs_max(bool): Whether to use `per_channel` quantization training. Default is True.

            weight_bits(int): quantization bit number for weight. Default is 8.

            activation_bits(int): quantization bit number for activation. Default is 8.

2174
            not_quant_pattern(list[str]): When the skip pattern is detected in an op's name scope,
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
                the corresponding op will not be quantized.

            algo(str): Other quantization training algorithm.

        Exampless:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.qat = True
            strategy.qat_configs = {
                "channel_wise_abs_max": True,
                "weight_bits": 8,
                "activation_bits: 8,
                "not_quant_pattern": ['skip_quant']}

        """
        return get_msg_dict(self.strategy.qat_configs)

    @qat_configs.setter
    def qat_configs(self, configs):
        check_configs_key(self.strategy.qat_configs, configs, "qat_configs")
        assign_configs_value(self.strategy.qat_configs, configs)

K
kuizhiqing 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    @property
    def heter_ccl_mode(self):
        """
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.heter_ccl_mode = True

            # for initialize parallel env, only need to call
            paddle.distributed.init_parallel_env()
            # then the heterogenous context will be created.
        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
            print("WARNING: heter_ccl_mode should have value of bool type")

2231 2232
    @property
    def cudnn_exhaustive_search(self):
2233 2234 2235 2236 2237 2238 2239 2240
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
2241

2242 2243
          .. code-block:: python

1
123malin 已提交
2244 2245
            import paddle
            paddle.enable_static()
2246 2247 2248 2249 2250 2251 2252
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
2253 2254 2255
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2256
    @is_strict_auto
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
2267 2268 2269 2270 2271 2272 2273 2274
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
2275

2276 2277
          .. code-block:: python

1
123malin 已提交
2278 2279
            import paddle
            paddle.enable_static()
2280 2281 2282 2283 2284 2285
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2286

2287
        """
2288 2289 2290
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2291
    @is_strict_auto
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2302 2303 2304 2305 2306 2307
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
2308

2309 2310
          .. code-block:: python

1
123malin 已提交
2311 2312
            import paddle
            paddle.enable_static()
2313 2314 2315 2316 2317 2318 2319 2320
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
2321 2322 2323
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2324
    @is_strict_auto
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2353 2354
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2355

2356 2357 2358 2359 2360 2361
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2362
    def __repr__(self):
2363 2364 2365 2366 2367 2368 2369
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
2370
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
2371 2372
            max_k, " " * spacing, max_v
        )
2373 2374 2375 2376 2377 2378 2379 2380 2381

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2382
        fields = self.strategy.DESCRIPTOR.fields
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
2397 2398
                                "{}=True <-> {}_configs".format(f.name, f.name)
                            )
2399
                            draws += line + "\n"
2400 2401 2402
                            my_configs = getattr(
                                self.strategy, f.name + "_configs"
                            )
2403 2404 2405
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
2406 2407 2408
                                    getattr(my_configs, ff.name),
                                    google.protobuf.pyext._message.RepeatedScalarContainer,
                                ):
2409 2410 2411
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2412
                                            draws += h2_format.format(
2413 2414
                                                ff.name, str(v)
                                            )
2415
                                        else:
2416
                                            draws += h2_format.format(
2417 2418
                                                "", str(v)
                                            )
2419 2420 2421
                                else:
                                    draws += h2_format.format(
                                        ff.name,
2422 2423
                                        str(getattr(my_configs, ff.name)),
                                    )
2424 2425
                    else:
                        env_draws += h2_format.format(
2426 2427
                            f.name, str(getattr(self.strategy, f.name))
                        )
2428 2429
                else:
                    env_draws += h2_format.format(
2430 2431 2432 2433 2434 2435 2436 2437 2438
                        f.name, str(getattr(self.strategy, f.name))
                    )

        result_res = (
            draws
            + border
            + "\n"
            + h1_format.format("Environment Flags, Communication Flags")
        )
2439 2440 2441 2442 2443 2444 2445
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2446
        for f in fields:
2447
            build_strategy_str += h2_format.format(
2448 2449
                f.name, str(getattr(self.strategy.build_strategy, f.name))
            )
2450 2451 2452 2453 2454 2455 2456 2457
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
2458 2459
                f.name, str(getattr(self.strategy.execution_strategy, f.name))
            )
2460 2461 2462 2463
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res